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Abstract

Major barriers to accessible healthcare include the high cost of 
medical devices and limited healthcare facilities. Mobile computing 
technologies, such as smartphones and smart watches, include 
high-quality hardware, such as microphones, speakers and cameras, 
which can be leveraged for the design of low-cost mobile medical 
systems intended to be remotely applied to monitor health and disease. 
In this Review, we discuss low-cost and accessible hardware — in 
particular, mobile phones — that can be used in mobile medical systems 
to aid in medical diagnostics and monitoring. Specifically, we outline 
acoustic-based systems, vision-based systems and sensor fusion 
systems that allow different levels of health and disease assessment, 
relying on the speakers, microphones and sensors of smart mobile 
devices. We highlight the challenges related to the deployment of 
mobile medical systems in the clinical continuum, including scaling, 
generalizability, bias, trust and privacy. Finally, we examine clinical 
integration and regulatory considerations with regard to mobile 
medical devices as well as future applications.
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inertial measurement units (IMUs), light detection and ranging (LiDAR) 
sensors, depth cameras, high-frequency ultrasound, slow-motion 
cameras, projectors and ultrawideband radios might be exploited in the 
engineering of mobile medical systems. Moreover, smartphone proces-
sors including graphics processing units, such as Apple’s neural engine, 
which are specialized cores functioning as a neural processing unit, 
allow on-device machine learning applications and can be explored for 
real-time speech translation or privacy-preserving, passive sensing of 
acoustic biomarkers to track neurological processes.

Smart devices, such as smart speakers, smart watches, wireless 
earbuds and smart eyewear, can serve as sensing platforms in mobile 
health sensing (Box 1). For example, active sonar and beamforming 
technology in smart speakers allows the measurement of the respira-
tory rates of infants using white noise19 and heart rhythm assessment 
in adults20. In-ear devices can be applied for ear health assessment, 
for example, by measuring eardrum mobility to detect middle-ear 
fluid15 and disorders21, as well as to screen for hearing loss by measur-
ing otoacoustic emissions22–24. Furthermore, wearable cameras can be 
applied to identify medication errors25, and smart eyewear can be used 
in augmented-reality assisted surgery26–28.

In this Review, we discuss advances, challenges and future 
directions in the field of mobile health systems (Fig. 1). We focus on 
technologies that leverage consumer smart devices (smartphones, 
smartwatches, smart speakers, smart glasses, smart eyewear and ear-
buds) as platforms for sensing and health assessments (Table 1). Thanks 
to the accessibility, economies of scale and sensing capabilities of these 
devices, they could support global access to high-quality healthcare 
(Box 2). We categorize mobile medical systems according to their 
primary sensing modality into: acoustic-based systems, which have 
both active and passive sensing approaches; vision-based systems, 
which leverage RGB cameras for motion tracking, colour analysis and 
scene understanding; and sensor fusion systems, which combine pas-
sive sensor data (for example, IMUs, radio signal strength and light 
sensors), digital activity traces and user questionnaires to measure 
digital biomarkers for individual-scale and population-scale health 
sensing, such as in digital contact-tracing systems for epidemiologi-
cal tracking. Finally, we highlight mobile systems that use custom but 
low-cost sensing systems for healthcare monitoring.

Acoustic-based systems
Acoustic-based systems, comprising active sonar and passive sensing 
systems, exploit built-in speakers and microphones. Active sonar sys-
tems emit custom sound from the speaker, while recording from the 
microphone, thereby enabling contactless monitoring by measuring 
human motion, such as breathing and heartbeats, based on acoustic 
reflections. Such systems can also be used for point-of-care testing of 
ear-related health conditions. Passive sensing systems rely solely on the 
microphone to record acoustic biomarkers, and can be used to detect 
cardiac arrest events from a smart speaker29, respiratory function over 
a telephone line17 and cough sounds using a neck-worn phone11.

Active sonar systems
Contactless monitoring systems (Fig. 2) leverage active sonar signals 
to track human motion by transmitting inaudible acoustic signals in 
the 18–22-kHz frequency band. Audible noise and interference, includ-
ing human speech <18 kHz, can be filtered out, which enables privacy 
preservation10. These systems allow at-home monitoring of medical 
conditions. Individuals can self-administer the test and share the results 
virtually with their physician, thus improving access to healthcare. 

Key points

	• Mobile medical systems leverage smart devices and their sensing 
capabilities for the remote detection of health conditions.

	• Acoustics-based systems rely on microphones and speakers to 
monitor vital signs in a contactless manner and to passively sense 
audible biomarkers to detect medical conditions.

	• Vision-based systems combine cameras and actuators in smart 
devices with computer vision algorithms to track physiological  
signals, diagnose medical conditions and analyse biofluids.

	• Sensor fusion systems combine passively measured sensor data, 
digital activity traces and questionnaire responses to assess digital 
biomarkers associated with physical, mental and behavioural health.

	• The scaling and adoption of mobile medical systems require 
generalizability to diverse hardware designs, adaptation to real-world 
environments, assurance of patient privacy and mitigation of  
clinical bias.

Introduction
Medical resources and devices are not equitably accessible around the 
globe, partly owing to the high costs of medical devices and limited 
healthcare facilities1–3. For example, hearing care4 in low-resource and 
rural regions often relies on outdated diagnostic hardware, donated by 
non-profit foundations, such as Hear the World, and patients often have 
to travel a long distance for hearing screenings5. Similarly, blood-clot 
tests are essential for individuals who need to take blood thinners but 
these tests are expensive or have to be conducted in laboratories. As 
a result, such patients might remain in an acceptable blood-clotting 
range for only 40% of the time owing to less frequent testing6–8. In addi-
tion, rare diseases, such as speech impediments, might affect only a 
small population, and thus financial incentives to invest in research 
and development on rare conditions might be limited.

Mobile computing technologies, including smartphones and 
earphones, can incorporate high-quality microphones and speakers, 
and cost US$40–50 second-hand, which is substantially lower than the 
cost of a typical medical device. Such mobile devices can be leveraged 
for the design of medical systems for large-scale diagnostics and moni-
toring through the co-design of sensor hardware and software using 
machine learning, wireless sensing and signal-processing tools. For 
example, onboard sensors, such as acoustic sensors in a smartphone, 
enable the detection of breathing irregularities associated with sleep 
apnoea9 and opioid-induced respiratory depression10. Similarly, pas-
sive acoustic monitoring systems can detect lung disorders through 
cough sounds11, and digital phenotyping systems12–14 can assess physical 
activity or irregular speech patterns by combining data from different 
sensors. In addition, low-cost tools can be attached to mobile devices; 
for example, a paper cone to detect middle-ear fluid15 or a 3D-printed 
plastic holder to collect a small blood sample for blood clot testing16, 
a whistle-like device for spirometry lung-function testing17 or a smart-
phone clip that guides the user to press their finger against the camera 
for blood-pressure testing18.

In addition to the standard sensors included in mobile devices, 
such as red–green–blue (RGB) cameras, microphones, speakers and 
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In addition, individuals in home isolation or quarantine settings can be 
monitored, reducing the burden of regularly disinfecting contact-based 
wearable devices.

ApneaApp9 is a contactless monitoring system that uses a smart-
phone to track fine-grained breathing and motion patterns of the chest 
and abdomen to detect sleep apnoea and hypopnoea events by continu-
ously transmitting inaudible frequency-modulated continuous-wave 
(FMCW) signals and analysing the reflections that bounce off the chest 
of an individual (Fig. 2a–d). ApneaApp has been evaluated in a clinical 
study at a sleep laboratory against gold-standard polysomnography on 
apneic patients, demonstrating a high degree of accuracy in identify-
ing sleep apnoea events. The active sonar principle in smartphones 
can also be applied for opioid-overdose detection10 by identifying 
respiratory depression, apnoeas and large movements correlated 
with opioid toxicity. In a supervised injection facility and an operat-
ing room environment with simulated opioid-overdose events, this 
overdose detection system could accurately identify overdose events. 
SpiroSonic30 exploits active sonar to measure chest-wall motion, which 
is transformed into indices of lung function, whereas PTEase31 measures 
reflections from an individual’s airway using a mouthpiece to measure 
the cross-sectional area of each airway segment.

Smart speakers that support an array of six to seven micro-
phones enable fine motion tracking through complex acoustic signal- 
processing algorithms (Fig. 2e–g). By extracting submillimetre body 
displacements caused by the chest wall, smart speakers can filter out 
larger breathing motions and ambient noise to identify individual 
heartbeats and compute the heart rate and R–R intervals (interbeat 
interval, measured between successive R-peaks in ECG signal) for 
healthy users and users with cardiac abnormalities20. BreathJunior19 can 
monitor subtle breathing motions of infants in the neonatal intensive 
care unit (NICU) using white-noise signals. A contactless approach is 
particularly desirable for infants, given that wires and contact sensors 
can cause rashes, burns and, in rare cases, death from strangulation32,33.

Earable systems are designed to detect medical conditions and 
measure physiological signals from the ear (Fig. 3). Active sonar earable 
systems can detect middle-ear fluid by sending a soft acoustic chirp 
at 1.8–4.4 kHz through a paper funnel into the ear canal, measuring 
reflections to assess eardrum mobility15 (Fig. 3a–c). An ear without 
fluid allows most sound to pass through the eardrum, whereas fluid 
buildup causes the eardrum to stiffen and reflect more sound energy. 
This platform shows comparable performance to specialist tools, such 
as tympanometry and pneumatic otoscopy, and can be performed by 
non-specialists. EarHealth34 can assess ear disorders using a modi-
fied wired earphone with an in-ear-facing microphone and speaker 
to probe the ear. The system can detect ears that are normal, filled 
with fluid, blocked with earwax or that contain a ruptured eardrum. 
Wireless earbuds23 and smartphone earbuds24 allow low-cost newborn 
hearing screening (Fig. 3d–f) by probing the cochlea with sounds that 
cause cochlea hair cells to vibrate. A microphone detects the sounds 
produced from the vibrations to assess hearing status. This system 
achieves clinical accuracies comparable to the gold-standard hearing 
screening devices cleared by the US Food and Drug Administration 
(FDA), which are orders of magnitude more expensive. An open-source, 
portable, smartphone-based attachment21 can be applied to measure 
middle-ear function and help to diagnose middle-ear disorders. The 
attachment probe forms a seal with the ear canal, safely varies air pres-
sure and generates a tympanogram to quantify eardrum mobility. APG35 
uses active noise-cancelling headphones to send ultrasound signals 
into the ear canal to monitor cardiac events. Blood-vessel deformation 

leads to minute changes to the ear-canal volume, which can be tracked 
by this system using ultrasound reflections to measure heart rate and 
heart-rate variability.

Passive sensing systems
Audible biomarkers in non-speech and speech sounds can be detected 
using ambient sensing systems that leverage voice assistants on smart-
phones or smart speakers to passively listen for medical events. These 
systems can track medical conditions long-term and thus have the 
potential to identify medical conditions that are difficult to detect in 
isolated clinic visits. However, such passive sensing systems require 
high levels of specificity to avoid false-positive events, must be gen-
eralizable to multiple environments with varying ambient noise 
profiles, and must address privacy concerns in relation to always-on 
microphones by operating locally without sending data to the cloud.

Box 1 | Translational considerations
 

Mobile medical systems are typically based on a proof-of-concept 
prototype that relies on built-in sensors of a smart device and/or 
custom low-cost attachments15–18 to augment the device’s sensing 
capabilities. Translating a prototype into a deployable system 
requires consideration from multiple stakeholders.

Reimbursement considerations
Medical expenses can be reimbursed by insurance companies. 
In the USA, mobile health systems can be designed to conform 
to insurance codes, such as the current procedural terminology 
(CPT) codes used by Medicare and Medicaid. For example, 
smartphone-based middle-ear-fluid detection by acoustics15 is 
reimbursable under the Medicare and Medicaid CPT code 92567. 
Mobile health companies, such as Eko Health, have been approved 
for a new CPT code to cover the SENSORA digital stethoscope 
that detects heart diseases using artificial intelligence algorithms. 
Integration with an insurance system might thus promote adoption.

Human factors design
Users should be considered in the design of a mobile medical 
system. If the intended user is a medical professional, hardware 
design and software user interfaces should resemble to familiar 
medical devices to streamline adoption and minimize usability 
concerns. If the intended user is a layperson, the device should 
present an easily interpretable medical result with actionable 
suggestions.

Balancing true and false positives
Mobile medical systems are often designed to produce a binary 
result, indicating the presence or absence of a disease or medical 
event. Screening or early detection tests intended for broad 
population testing typically prioritize achieving a high true-positive 
rate, even if this might result in an increased false-positive rate. 
This approach is justified only if the medical consequences of a 
false-positive result are minor, given that a positive result is typically 
followed up by more accurate diagnostic tests for confirmation. 
Diagnostic systems require a high true-positive rate and a low 
false-positive rate to yield an accurate result without generating 
unnecessary false alarm.
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Detecting non-speech audible biomarkers. Non-speech body sounds 
have been proposed as privacy-preserving biomarkers for health con-
ditions. For example, smart speakers can detect agonal breathing29, an 
audible biomarker that occurs in more than half of cardiac arrests and 
when an individual experiences low oxygen levels36,37. Such smart speak-
ers can connect individuals that experience a cardiac arrest to emergency 
medical services in a timely manner. This system has been trained with 
911 audio recordings of cardiac arrests to classify agonal breathing 
instances in real time in a bedroom setting. PDVocal38 enables passive 
detection of Parkinson’s disease by identifying breathing and sniffing 
sounds that indicate declining lung health and early signs of Parkinson’s 
disease. BodyBeats39 relies on a wearable piezoelectric microphone 
embedded in a neckpiece that is in contact with the user’s skin to capture 
body sounds, such as eating, drinking, breathing, laughing and coughing.

Coughing, in particular, can serve as an early detection marker for a 
variety of respiratory conditions, such as asthma40, cystic fibrosis41 and 
chronic obstructive pulmonary disease (COPD)42. Privacy-preserving 
cough detection systems11 analyse audio from a mobile phone placed 
in a user’s shirt pocket or worn around the neck. To preserve patient pri-
vacy, the system applies principal component analysis to spectrograms 

for audio classification. For example, crowdsourced, passively sensed 
audio of coughing, breathing and speech can be used to detect COVID-19  
(refs. 43–46) track disease progression over time47,48 and distinguish the 
coughing of multiple people49. FluSense50 captures coughs and speech 
using a microphone array, combined with thermal camera videos, to 
predict influenza caseloads in hospital waiting areas.

Tracking speech patterns. Speech recordings can be analysed to iden-
tify patterns associated with disease. For example, Parkinson’s disease 
affects the vocal tract, making it challenging to speak. Therefore, the 
progression of Parkinson’s disease can be monitored by analysing speech 
patterns51,52. StressSense53 passively senses stress from human voices 
in conversations recorded in indoor and outdoor environments, and 
compares predictions with skin-conductance data from a wrist band. 
EmotionSense54 uses acoustic features to categorize speech into broad 
emotional categories, such as happy, sad, scared, angry and neutral.

Physiological sensing using earables. Passive acoustic sensing sys-
tems can also be applied in earable systems that use in-ear microphone 
earbuds to measure physiological signals, taking advantage of the  

Earables

Smart watch

Microphone Camera Speaker LiDAR

Smartphone

Smart speaker

Acoustic-based systems Vision-based systems Sensor fusion systems

Physiological signals
Breathing, heartbeats, eardrum 
mobility, body sounds (coughing, 
eating events, motions), heart 
sounds, cochlea response

Physiological signals
Infant breathing, heartbeats, 
agonal breathing (precursor to 
cardiac arrest), speech patterns 
(e.g. Parkinson’s disease)

Health conditions
Sleep apnoea, opioid-induced
respiratory depression, middle-ear 
fluid, lung function, respiratory 
conditions (e.g. asthma, cystic 
fibrosis, COPD, COVID-19, flu)

Physiological signals
Breathing, heart rate, PPG, 
haemoglobin, blood-oxygen 
saturation, seismocardiograph, 
blood pressure, capillary refill
time, intra-ocular pressure, blood
glucose, microsleep events
Health conditions
Concussion, jaundice, anaemia,
diabetic retinopathy, hypoxaemia,
blood-clotting times, proteinuria

Health conditions
Depression, anxiety, schizophrenia 
symptoms, mood, fatigue, sleep 
quality, stress

Health conditions
Bruxism, sleep stages, epileptic
seizures, blood pressure

Physiological signals
Heart rate, heart sounds, 
teeth movement

Health conditions
ADHD

Health conditions
Hearing loss

Fig. 1 | Mobile medical systems. Smart devices contain an array of sensors, 
including acoustic and vision sensors, which can be used for measuring 
physiological signals and health conditions. Passive sensor data can also be 

fused to obtain a readout. ADHD, attention-deficit hyperactivity disorder; COPD, 
chronic obstructive pulmonary disease; LiDAR, light detection and ranging.
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occlusion effect. This effect occurs when the ear canal is blocked, such 
as when wearing earbuds, causing users to perceive an amplification 
of low-frequency bone-conduction sounds that occur during human 
motion. Using an in-ear microphone, OESense55 can sense motion to 
recognize step counting, activity and hand-to-face gestures, and hEART56 
measures heart rate during user motion, outperforming in-ear photop-
lethysmography (PPG). A custom in-ear microphone in a wired earbud 
design can detect low-frequency infrasonic vibrations (<20 Hz) caused 
by heart sounds57. This system can thus measure heart rate and interbeat 
interval, and differentiate between atrial fibrillation and sinus rhythm 
with an accuracy comparable to ground-truth electrocardiogram (ECG) 
measurements.

The raw audio stream recorded by commercial in-ear microphones is 
typically not accessible. Therefore, custom hardware design is required, 
or the microphone must be wired out to capture the audio signal. Alter-
natively, the in-ear speaker of earbuds can be repurposed as an input 
transducer to measure signals from the ear. For example, EarSense58 uses 
the in-ear speaker to record teeth gestures, such as tapping and sliding, 
from different regions of the mouth. This system has been evaluated 
with interfering user motions caused by walking, nodding, cooking and 
cycling. Asclepius59 converts earphones into a stethoscope, using the 
in-ear speaker to capture minute heartbeats from inside the ear and to 
reconstruct phonocardiogram signals for remote cardiac auscultation.

Point-of-care testing. Point-of-care tests can be administered on a 
smartphone to detect audible biomarkers. For example, SpiroSmart60 

measures lung function on a smartphone by having the user breathe in 
and forcefully exhale into the microphone. By analysing audio features 
in the time and frequency domains, the flow rate can be computed, with 
an accuracy comparable to that of a clinical spirometer. SpiroCall17 
extends this capability to low-end mobile phones, such as feature 
phones that lack the processing power to locally process acoustic data. 
In this system, acoustic data is sent over a standard voice telephony 
channel, which degrades the audio quality, to an external server that 
provides algorithms to estimate the flow rate. In addition, a 3D-printed 
whistle accessory ensures an ideal testing setup for users with lower 
flow rates or who have difficulty performing the test.

Vision-based systems
Cameras are prevalent in smartphones, with many featuring front- 
and rear-facing cameras, which can capture high-resolution images 
and videos. Some smartphone models further contain a LiDAR scan-
ner with a near-infrared camera, typically used for facial identifica-
tion, and slow-motion cameras with high frame rates of 960 frames 
per second. Moreover, extended-reality devices for virtual and  
augmented reality typically contain multiple RGB and depth cam-
eras for scene understanding as well as eye-tracking cameras. Vision- 
based systems can also be adapted for medical testing. For exam-
ple, motion-tracking systems can report on physiological signals by 
tracking subtle body movements in video over time using computer 
vision algorithms (Fig. 4a). Colour-analysis systems can detect col-
our changes on an individual’s body related to vital signs or disease 

Table 1 | Acoustic- and vision-based sensing technologies

Sensor Sensing 
technique

Clinical applications Deployed systems Opportunities and limitations

Microphone 
and speaker

Active sonar Vital signs: breathing23,24; heartbeats20,35

Medical events: apnoea9; opioid-induced respiratory depression10

Ear disorders: middle-ear fluid15,21; newborn hearing loss22–24

BreatheEasy, 
SleepScore app

Opportunities: continuous 
monitoring by always-on, 
low-power sensors; contactless 
sensing; can be integrated into 
most smart devices
Limitations: sensitivity to 
ambient background noise; 
privacy concerns; dataset 
collection and curation; 
potential for false positives; 
requires sensor calibration 
across different devices

Passive acoustic 
sensing

Non-speech biomarkers: agonal breathing to detect cardiac 
arrest17,60; breathing and sniffing sounds to detect Parkinson’s 
disease38; coughing to detect respiratory conditions (such as 
asthma, cystic fibrosis, COPD, COVID-19, flu)11,43–50;
Speech patterns: Parkinson’s disease52,222; stress sensing53; emotion 
sensing54

Physiological signals: heart rate; heart rate variability; interbeat 
interval56,57; phonocardiogram59; teeth movement58,103; step 
counting55

Point-of-care testing: measuring lung function17,60

Digital Wellbeing app 
for Pixel phones

Time-of-flight 
ranging

Digital contact tracing TraceTogether109

Exposure notifications

Camera Motion tracking Vital signs: breathing and heart rate61–68,
Eye testing: pupillometry70–72; intra-ocular pressure73; microsleep 
events74

Biofluid sensing: blood clotting16,77; protein concentration in urine76

Google Fit for Pixel 
phones (breathing), 
Minuteful Kidney

Opportunities: contactless 
sensing; captures spatial, 
temporal and colour dimensions
Limitations: privacy concerns; 
sensitivity to ambient lighting 
conditions; might require high 
power, thereby reducing battery 
life if used for continuous 
monitoring; requires sensor 
calibration across different 
devices; accuracy may differ 
across skin tones for certain tests

Colour analysis Blood testing: haemoglobin levels78–80; oxygen saturation81,82; blood 
pressure18,83,84

Skin testing: jaundice85,86; anaemia87; capillary refill time90

Eye testing: diabetic retinopathy; diabetic macular oedema and 
poor blood glucose control89; jaundice87

Google Fit for Pixel 
phones (heart rate)

Scene 
understanding

Medication errors25

Medical student training91

Surgical tool tracking92–95

—

COPD, chronic obstructive pulmonary disease.
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(Fig. 4b). Scene-understanding systems use wearable camera systems 
in extended-reality devices, applying real-time computer vision algo-
rithms to automatically streamline manual tasks, for example, in the 
operating room.

Motion-tracking systems
Tracking vital signs. Computer vision algorithms can track subtle 
changes in videos of the face captured by cameras, detecting chest 
movements corresponding to individual breaths and identifying head 
motions caused by blood flow, which can be mapped to individual 
heartbeats61–68. JoulesEye69 uses a smartphone thermal camera system 
to measure respiration during high-intensity exercise and to estimate 
calorie burn. This system has been validated against ground-truth ECG, 
PPG sensors and respiration belts. Such capabilities are commercially 

available and can capture breathing rate by tracking chest movements 
from the front-facing camera.

Eye testing. PupilScreen70 assesses the pupillary light reflex through a 
head-mounted smartphone display. The smartphone’s flash stimulates 
the user’s eye while recording changes to their pupil size over time to 
determine whether the pupil’s response indicates traumatic brain 
injuries, such as concussions. The same test can also be performed 
without a head-mounted attachment71 by combining images from a 
front-facing RGB camera and a near-infrared camera, typically used for 
facial recognition. Alternatively72, just the RGB camera and a long-pass 
filter eye attachment can be applied to perform pupillometry across 
individuals with different levels of melanin in the irises. Intra-ocular 
pressure can also be measured with a smartphone-based attachment 
that emulates a fixed-force tonometry test73. CarSafe74 measures eye 
events, such as microsleep events and blinking rates, which can indicate 
drowsy driving, using the front-facing camera. Similarly, distracted 
driving phone usage75 can be detected by distinguishing drivers and 
passengers using their phones and computer vision techniques.

Biofluid sensing. The smartphone camera can be combined with 
built-in actuators for biofluid sensing, without requiring additional 
electronic attachments. For example, a vibration motor and camera 
on a smartphone can be applied to measure blood-clotting time, 
requiring only 10 µl of blood16. The blood sample is deposited into 
a rubber cup that contains a copper particle and that is attached 
to a plastic cup holder coupled to the phone. The vibration motor 
causes the sample to vibrate and the copper particle to move around. 
Computer vision algorithms track when particle motion comes to a 
standstill, which occurs when the blood coagulates and thickens. 
CapCam76 can measure the surface tension of urine to detect elevated 
protein concentration levels, indicating a high risk for proteinuria; 
here, the smartphone is placed over a cup of urine to capture capil-
lary waves caused by the vibration motor. The wavelength between 
the crests and troughs of the ripples is then used to measure liquid 
surface tension. The LiDAR sensor has been explored to determine 
fluid properties of small liquid samples77. When the LiDAR beam is 
projected onto a sample of liquid, a characteristic laser speckle pat-
tern forms owing to light scattering from suspended particles, such 
as red blood cells and platelets in blood or fat and protein globules 
in milk. By characterizing the Brownian motion in the liquid, the vis-
cosity states associated with coagulated and uncoagulated drops of 
blood can be distinguished.

Colour-analysis systems
Measuring vital signs. Colour-analysis systems can track vital signs 
from videos captured by a smartphone’s rear-facing camera. In 
HemaApp78–80, users place their finger over the back camera with the 
flash on and the system analyses subtle colour changes to estimate an 
individual’s haemoglobin concentration level to screen for anaemia, 
with performance similar to FDA-approved haemoglobin measurement 
devices. The Google Pixel phone uses this technique to measure colour 
changes caused by blood moving through the fingertip to compute 
heart rate. Blood-oxygen saturation levels can be measured to detect 
hypoxaemia, with similar performance to pulse-oximeter readings81,82. 
Seismo83 uses the smartphone’s accelerometer to capture heart-valve 
vibrations and measure seismocardiography data by placing the phone 
on the user’s chest. This is combined with PPG breathing data from the 
camera to compute pulse transit time and diastolic blood pressure. 

Box 2 | Low-resource considerations
 

Medical devices are often designed for well resourced clinical 
environments. By contrast, mobile medical systems can provide 
solutions for regions that lack clinical resources and infrastructure. 
However, this requires several key design considerations.

Unreliable internet connectivity
Network connectivity issues can prevent mobile devices from 
connecting to the internet, posing challenges for systems that 
rely on the sending and receiving of medical data from machine 
learning models to and from the cloud. Alternatively, large 
machine learning models can be miniaturized to allow on-device 
inference using techniques such as pruning183, quantization184 and 
distillation185.

Power outages
Medical devices typically require a wall outlet for power and are not 
designed to work in the event of electrical failures. Electrical failures 
can also result in the loss of lighting, which may be necessary for 
mobile systems that rely on cameras and vision-based techniques. 
Therefore, such systems need to work under a range of lighting 
conditions and with only the aid of a smartphone flash.

Noisy environments
Noisy environments can pose a challenge to mobile medical 
systems that leverage acoustics. Noise detection and cancellation 
algorithms can help to mitigate the effect of noise. Furthermore, 
ultrasonic sensing at >18 kHz can be applied for the sensing of 
breathing, heartbeats and human motion9,10,19,20.

Shortage of trained professionals
Mobile medical systems must be designed to be usable by 
individuals with limited expertise, and they should output 
actionable results that are easily interpretable.

Optimizing for limited sensing and computation capability
If smartphones with high-fidelity sensors are limited, mobile 
systems can be designed for low-cost feature phones, for 
example, to measure lung function using spirometry over a 
standard telephony voice channel17 or to perform audio-based 
privacy-preserving cough detection11.

http://www.nature.com/natrevbioeng
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However, Seismo requires initial calibration using a blood-pressure 
cuff for each user. By contrast, for BPClip84, this calibration step can be 
bypassed with the aid of a low-cost mechanical smartphone attachment 

that measures blood pressure using the oscillometry principle: the 
user places their finger onto a spring-loaded mechanism attached to 
the smartphone camera and gradually applies pressure, resulting in 
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Fig. 2 | Contactless monitoring of vital signs using active sonar. 
a–d, Contactless detection of sleep apnoea9 and opioid overdose10 on smart
phones. a, Breathing can be measured in a contactless manner using active sonar 
on a smartphone. The speaker transmits an inaudible, frequency-modulated 
continuous-wave radar (FMCW) signal, which is reflected by the chest and 
recorded using the microphone. Changes in the breathing signal can be related 
to sleep apnoea and opioid overdose. d1 and d2 denote the distance between the 
smartphone and the chest during inhalation and exhalation respectively. b, The 
transmitter continuously transmits signals, in which the frequency increases 
linearly with time between frequencies f0 and f1 over a duration Tsweep Reflections 
arriving with a time delay ∆t create a frequency shift ∆f. To extract the minute 
frequency shifts created by breathing motion, the receiver performs a fast 
Fourier transformation (FFT) over an integer number of chirps n. c, Over the 
course of multiple breathing cycles, reflections from the chest arrive at time 
delays ∆ti and ∆te, when breathing in and out. These changes translate to distinct 
frequency shifts ∆fi and ∆fe, which can be estimated by taking an FFT over the chirps. 

FFTk, FFT segment k; FFTk+x, FFT segment k+x; FFTn segment n. d, The breath
ing signal is located in a frequency bin corresponding to the individual’s  
distance from the smartphone. Environmental motion occurs at a different 
distance and would thus appear in a different frequency bin, which can be 
filtered out. tk, time point k; tk+x, time point k+x; tn, time point n. e–g, Smart 
speakers can be applied to monitor heart rhythms in a contactless manner20. 
e, When using active sonar to measure heartbeats, the breathing motion is 
strong, but the heartbeats are weak and difficult to observe. f, In the frequency 
domain, harmonics produced from the breathing signal spread out into the bins 
corresponding to heart-rate range and therefore cannot easily be filtered out. 
g, Beamforming and signal-processing algorithms running on a smart speaker 
system can be used to extract individual heartbeats from the signal. cpm, counts 
per minute; R–R interval, the time interval betweentwo successive heartbeats, 
measured from one R-peak to the next in the ECG signal. Panel b, image courtesy 
of S.G. Panels c and d reprinted with permission from ref. 10, AAAS. Panels e–g 
reprinted from ref. 20, Springer Nature Limited.
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brightness changes that correlate with arterial pulse amplitude and 
blood pressure. The oscillometry principle can also be applied without 
requiring mechanical attachments18 by leveraging the smartphone’s 
vibration motor and performing vibrometric force estimation using 
the onboard IMU.

Detecting disease. Colour-analysis systems can detect diseases from 
images captured by smartphone cameras. For example, BiliCam85,86 is 
a low-cost system that identifies jaundice in newborns by detecting 
yellow discolouration of their skin. Here, a colour-calibration card 
is used to standardize across different smartphones and lighting 
conditions, enabling bilirubin estimation, which is as accurate as 
when determined by blood tests and comparable to readings from 

non-invasive bilirubinometers. BiliScreen87 can identify subtle dis-
colourations in eye images to detect mild, visually imperceptible 
forms of jaundice. The test is performed using either paper glasses 
with calibration markers to colour-balance across different light-
ing conditions or within the controlled lighting environment of a 
head-mounted display. Calibration-card-free visual detection of 
anaemia can be achieved using image metadata to normalize across 
lighting conditions88. Smartphone images also allow the detection of 
eye conditions that typically require a specialized camera to capture 
retinal fundus photos. Using a deep learning model, these images 
can detect eye conditions, such as diabetic retinopathy and diabetic 
macular oedema, as well as poor blood-glucose control89. CapApp90 
measures capillary refill time, which is the time taken by blanched 
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Fig. 3 | Low-cost earable systems to detect ear disorders. a–c, Middle-ear fluid 
can be detected using smartphones15. a, A paper funnel is attached to the phone, 
on which the speaker and microphone are co-located at the base. b, Active sonar 
is then applied to detect middle-ear fluid. c, Acoustic reflections from the ear 
differ depending on the presence of middle-ear fluid. d–f, Newborn hearing 
screening using low-cost earphones22–24. d, Earphones and wireless earbuds  
can be applied to detect newborn hearing loss. e, Two stimulus tones f1 and f2,  
are transmitted through each of the earbuds to stimulate the cochlea’s hair  
cells. Using wireless sensing algorithms, the microphone detects the sounds of 

vibrating hair cells, which is then used as a measure of hearing status. f, Wireless 
earbuds can eliminate unwanted reflections from the ear canal and eardrum 
using frequency-modulated continuous-wave radar (FMCW) processing to 
calculate the time of arrival of reflections from the ear canal. FFT, fast Fourier 
transform; DPOAE, distortion product otoacoustic emissions; OAEbud, 
otoacoustic emissions earbud; dB SPL, sound pressure level in decibels; Δf, 
frequency shift; Δτ, time delay. Panels a–c reprinted with permission from ref. 15, 
AAAS. Panels a–f reprinted from ref. 24, Springer Nature Limited.
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skin to return to its resting state after pressure has been applied. 
Here, a user presses their finger onto the camera of a vibrating phone 
and the amount of applied pressure is measured through dampened 
vibrations at the IMU, in addition to measurement of the brightness 
amplitude at the finger.

Scene-understanding systems
Cameras on extended reality devices, such as the HoloLens, heads-up 
displays and augmented-reality glasses have been explored for use 
in the operating room26–28. For example, wearable camera systems 
can detect clinical medication errors by classifying drug labels on 
syringes and vials and flagging if labels might be mismatched, indi-
cating an error25. HoloLens can serve as an augmented reality-based 
system for surgical education to guide catheter placement into the 
brain ventricular system, a common neurosurgical procedure91. Video 
data captured from the egocentric point of view can also be applied for 
surgical tool detection and tracking to assess surgical skill92–95. However, 
vision-based extended-reality systems rely on sampling from multiple 
high-resolution cameras, which requires high power and computational 
complexity to run machine learning models on streaming video data. 
Accurate and low-power scene-understanding systems would thus 
need to be optimized, including duty-cycling cameras, custom neural 
architecture designs and mechanisms to offload data to edge servers, 
while operating in real time.

Sensor fusion systems
Sensor fusion systems combine data from smartphones and wear-
able devices, such as smart watches and smart bands, to build a digital 

phenotype of a user and infer their behavioural and physiological health 
states (Table 2). Such systems can also measure digital biomarkers 
that correlate with measures of mental health13,96–98. Therefore, smart 
fusion systems allow for passive monitoring of the onset or progres-
sion of medical conditions over time. These systems typically leverage 
three main sources of data: passive sensor data, including IMU readings 
(accelerometer, gyroscope, magnetometer), global positioning system 
(GPS) location, network identifications and signal strengths (Wi-Fi and 
Bluetooth), ambient light, barometric pressure and skin temperature; 
digital activity traces, including call logs, internet browsing history, app 
usage and communication patterns (texts and emails); and question-
naires that periodically assess physiological, behavioural and mental 
state through tools such as ecological momentary assessment (EMA) 
and patient health questionnaires (PHQ). These sources of data can be 
applied to sense physical, behavioural and mental health conditions. 
To assess physical health, measurements can be combined across dif-
ferent built-in sensors, such as the IMU, or low-cost add-on sensors, 
such as electroencephalography (EEG) sensors, to obtain objective 
measures, such as blood pressure. Integrating multiple modalities 
can enable more accurate assessments. Behavioural health can be 
evaluated through inferences of raw sensor data to deduce digital 
phenotypes, such as activity and sleep patterns as well as indoor and 
outdoor mobility patterns, which are then correlated with measures 
of behavioural wellbeing, such as mood and loneliness, which can be 
obtained through questionnaires. Mental health monitoring relies 
on correlations between passive sensor data and digital activity 
traces to assess symptoms of conditions such as depression96,97 and 
schizophrenia13,99,100.
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Physical health
Individual-scale sensing. The health outcomes of individuals with 
multiple sclerosis, including depression, fatigue, sleep quality and 
global symptom burden, in the stay-at-home period during the 
COVID-19 pandemic, could be predicted using smartphone sensor 
data (call logs, GPS location, screen activity), physiological data from 
a Fitbit activity tracker (step count, heart rate, sleep and wake times) 
and health questionnaire data14.

Earable systems can also exploit sensor fusion by using the 
onboard IMU and custom sensors to measure signals from the ear. 
For example, the IMU on the eSense101,102 earbud platform can meas-
ure and classify teeth grinding and clenching behaviour to detect 
bruxism103. eBP104 measures diastolic and systolic blood pressure from 
the ear canal using an in-ear air pump, pressure sensor and valve; here, 
pressure is applied to the outer ear canal by a microcontroller and an 
in-ear light-pulse sensor measures the PPG signal. WAKE105 detects 
microsleep events using a custom earpiece to capture brain waves 
by EEG, eye movements by electrooculography (EOG), facial muscle 
contraction by electromyography (EMG), and skin conductivity by 
electrodermal activity. LIBS106 measures brain activity, eye movement 
and muscle contraction using EEG, EOG and EMG signals, respectively, 
from an in-ear device. These signals are recorded as a single mixture and 
a signal-separation model is then applied to isolate individual signals 
and classify different sleep stages. EarSD107 is an ear-worn system that 
enables the detection of epileptic seizures by sensing and classifying 
signals from EEG, EMG and EOG sensors.

Population-level sensing. The sensors of smart devices allow 
population-level sensing for public health and epidemiological sur-
veillance. For example, digital-contact tracing108–110 can be used to track 
a user’s exposure to individuals potentially infected with SARS-CoV-2 
using smartphone sensor readings. Exposure is typically defined 
as being within a 1 m or 2 m range of an infected person111. Although 
GPS location traces from a smartphone can provide coarse-grained 
location estimates with a distance resolution of 3–5 m, they do not 
provide sufficient accuracy to assess whether two people are within 
social distance. Furthermore, GPS cannot distinguish whether there 
is a wall or ceiling between two users and is thus unreliable indoors. 
Bluetooth-based solutions, such as TraceTogether109 and exposure 

notifications, rely on the received signal strength to infer proxim-
ity; however, such distance estimates might be unreliable. NOVID 
uses inaudible acoustic signals and time-of-flight ranging to measure 
the distance between smartphones. Smartphone clocks are able to 
measure the time down to milliseconds, and so the system can record 
when two phones have sent and received messages. By multiplying the 
difference between these timestamps with the speed of sound, NOVID 
produces a sub-metre distance estimate. However, in acoustic-based 
systems, signals can be attenuated by obstacles, and reflections can 
thus occur in a multipath-rich environment, which can interfere with 
the direct line-of-sight signal.

Global-scale datasets of passively measured accelerometer data 
have been analysed to reveal inequalities in the distribution of physical 
activity across different geographical regions, which might serve as a 
predictor of obesity prevalence. In addition, the walkability of a city 
might be associated with greater activity levels112.

Behavioural health
Sensor fusion systems113 might also predict behavioural health based 
on passively sensed data. For example, SoundSense114 uses raw audio 
data from the microphone to coarsely classify sound into speech, music 
and ambient sound, which can then be more accurately divided into 
specific sound classes. These classified acoustic events can inform an 
audio diary of daily events, recorded over time. Moreover, sleep dura-
tion can be assessed according to smartphone usage patterns, recharge 
events, ambient light sensor data and accelerometer data115. However, 
continuous data sampling from multiple power-demanding sensors 
(particularly if the device is not charging) can substantially drain bat-
tery life. To address this challenge, JigSaw116 contains power-efficient 
pipelines to adaptively adjust sensor sampling rates; here, algorithms 
are applied to measure user activity speed from accelerometer data 
and accordingly to adjust the GPS sampling rate. An activity classifier 
is then applied to the raw accelerometer data to enable users to track 
their daily calorie expenditure and carbon footprint. The mood-sensing 
system MoodScope117 takes an alternative approach by relying solely 
on digital traces of smartphone usage patterns (app usage, website 
browsing behaviour, email, text message and phone call patterns as 
well as location data) to make inferences about a user’s behaviour.

Sensor fusion systems can also promote positive changes to user 
behaviour. For example, BeWell118,119 applies quantitative scores to 
indicate whether a user is averaging adequate levels of sleep, aerobic 
activity and social interaction per day. These scores are presented 
to the user on their smartphone lock screen to promote wellbeing. 
MyBehavior120 combines passively sensed data with manual logging of 
food intake and exercise patterns to provide personalized suggestions 
for calorie loss. UbiFit121 leverages accelerometer and barometer data to 
classify a user’s physical activities, which are presented on the display to 
encourage exercise. The SmartGPA122 system measures a user’s studying 
and socializing patterns to predict academic grade point average (GPA) 
performance, which could enable timely interventions for improving 
academic performance.

Mental health
The long-term mental health trends of populations might be assessed 
by smart sensor systems. For example, the digital phenotyping system 
StudentLife12 has been applied to conduct a behavioural health study 
in a class of college students over the period of a school term. The 
system captured activity information (stationary, walking, running, 
driving, cycling) from IMU data, outdoor mobility patterns from GPS 

Table 2 | Sensor fusion systems for behavioural health 
monitoring and digital phenotyping

Sensor Digital phenotype Digital traces Medical findings

IMU User activity (such as 
exercise level)

Call logs
Text 
messages, 
email patterns
Internet 
browsing 
history
App usage

Depression12,14,96–98,123

Anxiety98

ADHD125

Schizophrenia 
symptoms13,99,100

Mood117

Fatigue14

Sleep quality14,107

Stress123,127

Microphone Social interaction 
levels

GPS Outdoor mobility 
patterns

Wi-Fi and 
Bluetooth

Indoor mobility 
patterns

Ambient light Sleeping patterns

Camera Event logging

Barometer Elevation

Heat sensor Body temperature

ADHD, attention-deficit hyperactivity disorder; GPS, global positioning system; IMU, inertial 
measurement unit.
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samples, indoor mobility patterns from Wi-Fi scan logs, conversation 
levels from the microphone audio stream, sleep duration from ambi-
ent light readings and phone usage logs. Here, sensor data correlated 
with measures of mental wellbeing (depression, stress, flourishing, 
loneliness), which was assessed through user questionnaires. Several 
systems have focused on further understanding the dynamics and 
effects of depression in the college population96,97.

Features could be developed on the basis of passively sensed data 
that relate to depression symptoms, as defined in the Diagnostic and 
Statistical Manual of Mental Disorders, 5th edition (DSM-5)96. These 
features correlate with self-reported Personal Health Questionnaire 
depression scale PHQ-8 and PHQ-4 scores. Data from smartphones 
and fitness trackers can further be used to identify depression symp-
toms without requiring periodic recalibration, using ground-truth 
questionnaires97. Here, depression scores are measured once at the 
beginning and once at the end of the semester, revealing post-semester 
depression 11–15 weeks before the end of the semester, thus allowing 
pre-emptive intervention. In a smartphone and ecological momentary 
assessment study, biomarkers of depression (P = 0.03) and anxiety 
(P < 0.001) in college students were found to statistically significantly 
correlate with fluctuations in COVID-19-related news during the 
COVID-19 pandemic98. Similar patterns have been identified in other 
populations14.

Digital phenotyping systems can also be applied in clinical stud-
ies to remotely assess new quantitative biomarkers in individuals with 
medical and psychiatric conditions123,124. For example, LemurDx125,126 
uses smartwatch accelerometer data to measure increased hyperactiv-
ity from hand motion, which could indicate an attention-deficit hyper-
activity disorder (ADHD). Trained with coarse activity information 
about children, provided by parents at the end of the day, the system 
can classify different activity patterns (sleeping, sitting, household 
activity, exercise, not wearing a watch). These motion data can then 
be combined with location data from GPS, a heart rate sensor on the 
smartwatch and Bluetooth scans.

CrossCheck13,99 and an approach using encoder–decoder neu-
ral networks100 can predict the severity of psychiatric symptoms in 
individuals diagnosed with schizophrenia (seeing things, hearing 
voices, worrying about being harmed) to aid in disease monitoring 
and preventing relapse. Digital phenotyping systems127 have also been 
evaluated in a population of resident physicians, which are at risk of 
workplace stress and developing mental health symptoms, identify-
ing physiological indicators of stress-resilience from physical activity, 
sleeping behaviour, heart rate and mood.

Custom low-cost sensing systems
In addition to mobile systems that make use of onboard sensors and 
smart devices, custom low-cost sensing systems enable alternative 
forms of healthcare monitoring. Furthermore, mobile medical systems 
allow large-scale digital epidemiology in the form of contact tracing.

Wearable sensing systems
Joey128 is based on a conductive fabric necklace that can measure the 
heart and respiration rate of infants through ECG signals during kan-
garoo mother care (chest-to-chest skin contact between the infant and 
a caregiver). Here, diffusion-based denoising models disentangle the 
ECG signals from the caregiver and the infant. PPG sensors, usually 
used in pulse oximeters and wearable devices to estimate heart rate, 
blood-oxygen saturation and other physiological parameters, pro-
vide less accuracy in individuals with dark skin because their higher 

melanin levels affect the absorption of laser light. MagWear129 tackles 
this issue by leveraging biomagnetism to measure heart rate and res-
piratory rate through a small magnet at the wrist. The magnet pushes 
blood flow, and biomagnetic field signals are then induced thanks to 
the ions produced by each heartbeat. This can be measured with a 
giant-magnetoresistance sensor. Painometry130 relies on a hat-shaped 
form factor sensing platform that measures EEG, PPG and galvanic skin 
response to objectively quantify a user’s pain perception. Custom smart 
rings131–133 with integrated IMU and PPG sensors might also be applied 
to monitor heart and respiration rate.

Instrumenting health devices
Health devices can be equipped with additional sensors to enrich health 
monitoring. For example, ToMoBrush134 can be applied to electric 
toothbrushes, using microphones to extract the acoustic resonance 
of an individual tooth and assess its dental condition. IOTeeth135 inte-
grates piezoelectric sensors in a dental retainer platform to monitor 
dental occlusal diseases, which can result in tooth loss, by tracking 
teeth biting and grinding activities. MechanoBeat136 can be applied 
to create 3D-printed tags that oscillate at a distinct frequency, which 
can be sensed with an ultra-wideband radar array to detect when a user 
interacts with a medicine pill bottle. Similarly, an insulin pen can track 
the number of times insulin is dispensed137.

Real-world challenges
Mobile health systems should work in different environments and 
for smart devices from different manufacturers. They should also be 
designed to mitigate biases and ensure trust, which requires policies 
enforced by regulatory bodies. Moreover, mobile health systems need 
to be integrated with clinical care processes.

Scaling to real-world environments
Deploying mobile medical systems in real-world environments faces 
challenges that are typically not seen in the controlled environments 
they were initially prototyped in.

Uncontrolled environments. Real-world testing environments can be 
complex, with suboptimal testing conditions, such as different levels 
of background noise and ambient lighting conditions, as well as human 
motion. Therefore, systems need to be designed to detect and toler-
ate real-world conditions. For example, smartphone-based systems 
that can detect opioid-induced depressed breathing require filters to 
remove audible environmental noise and distinguish breathing from 
other body motions10.

Dataset collection. Scaling to multiple environments might require 
the collection of large amounts of diverse data, which can be costly and 
difficult. Efficient dataset collection approaches, such as crowdsourc-
ing, and data-augmentation methods to create synthetic datasets, 
enable scaling across a large number of environments. For example, 
to collect breathing sounds from different smartphones and environ-
ments, the Amazon Mechanical Turk crowdsourcing platform has been 
harnessed to recruit individuals, who recorded their sleep with their 
smartphone microphone29. These recordings were subsequently used 
to train generative artificial intelligence (AI) models, such as generative 
adversarial networks, to produce synthetic data.

Data heterogeneity and incompleteness. Sensor fusion systems, 
such as those used for digital phenotyping, measure data from multiple 
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sensor modalities (for example, IMU, microphone, light sensor, net-
work signal strength), digital activity traces (for example, app usage 
levels, texting behaviour) and data types (for example, time series, 
survey results, symptoms). Machine learning models are typically 
designed to work with a single data type and cannot easily integrate 
heterogeneous data streams138. Multimodal machine learning models 
aim to jointly learn from different data types, which requires address-
ing challenges in data representation, translation, alignment, fusion 
and co-learning139. Furthermore, they cannot easily deal with data 
that are missing, incomplete or noisy, which can be produced by spo-
radic and uncontrolled usage patterns138. Therefore, data cleaning 
and preprocessing, in the form of noise and outlier removal, as well as 
data interpolation138, are typically required before machine learning 
models can be used.

Generalizing to diverse hardware designs
Medical devices are typically purpose-built for a standardized hardware 
design, which often differs from that used in smart devices and sensors. 
Furthermore, sensors, such as microphones and speakers, can degrade 
in quality over time. To address this, new clinical data can be collected 
for each new device; however, this approach can be time-consuming 
or infeasible, given the diversity of newly launched devices.

Sensor-calibration techniques, such as colour-coded reference 
cards85–87 and image metadata88, can be applied to normalize colour 
profiles for images captured across different smartphone cameras. 
A standardized acoustic cavity can be used to calibrate the acoustic 
frequency response of a speaker and microphone24, which allows scal-
ing of new devices without the need to collect additional clinical data. 
Systems that leverage the IMU for tasks, such as step counting, rely 
on features such as normalized auto-correlation, which work across 
different accelerometer sensitivities and sampling rates140,141.

However, not all hardware sensors can be calibrated by the user 
upon use. For example, in the case of contact-tracing apps that rely 
on Bluetooth signal strength to determine whether two smartphones 
are close to each other, each smartphone model might have a differ-
ent Bluetooth radio chip, antenna layout and phone operating system 
version, which could report different readings for the same distance. 
Obtaining the per-phone mapping from the received signal strength 
indicator to distance typically requires manual readings collected in 
an anechoic chamber, which is a time-consuming procedure. Trace-
Together, a Bluetooth-based contact tracing system, can perform this 
manual calibration process.

Mitigating bias from sensor-based systems
Medical mobile systems that do not address clinical bias can perpetu-
ate health inequities. For example, systemic biases can be propagated 
in systems that are trained with chest X-ray images142, diabetic retin-
opathy fundus images143, clinical interviews and records144 and other 
medical records145. Therefore, the FDA has released an action plan with 
the aim of supporting improvements to models after deployment. 
Bias might be mitigated through the generation of synthetic data by 
generative AI systems146, such as generative adversarial networks147, 
variational autoencoders148 and large language models, particularly 
for under-represented disease classes or severe disease states149–151. 
Synthetic data can also be generated using physics-based simulations 
in silico or benchtop models in vitro152–154.

Gender bias. Women and men show differences in ECG parameters 
during adolescence, with women typically having a faster heart rate 

compared to men and differences in QT interval (ventricular depo-
larization and repolarization time), QTc interval (heart rate–corrected 
QT) as well as QRS complex (ventricular depolarization amplitude and 
duration) owing to hormonal differences. These differences can result 
in greater levels of risk for certain diseases, with women aged 20–40 
having a threefold greater risk of arrhythmic-related cardiac events 
compared with men155. Mobile ECG systems can show reduced accuracy 
in women if they are trained primarily on data from men, which might 
lead to increased false positives for women in the ECG-based diagnosis 
of ischaemia156. This gap might be partly addressed by increasing aware-
ness during medical training and by adapting models to physiological 
differences.

Women and men also differ in their gait — for example, in kin-
ematic and kinetic variables in both healthy individuals and those with 
osteoarthritis157,158, which can be applied for automatic gait-based sex 
classification159. These differences should be accounted for in mobile 
medical systems, particularly in those performing activity recogni-
tion, through a balanced dataset or by incorporating sex-specific gait 
features into machine learning models to reduce bias.

Age bias. Mobile medical systems that measure physiological signals 
such as PPG and blood pressure should consider age-related physiologi-
cal differences. The PPG waveform at the ear, finger and toes changes 
with age owing to differences in physiology160. In particular, increased 
arterial stiffness might affect key signal features in the PPG waveform 
of older individuals, making them more challenging to detect161. Pulse 
oximetry measurements leveraging PPG can be biased owing to motion 
artefacts, for example, in children. Therefore, large probes should 
be adapted to the small fingers of neonates and infants, and devices 
should be calibrated with data from healthy young adults162. Moreover, 
age-matched ranges should be used in the evaluation of individuals with 
vascular disease160. Blood-pressure measurements are considerably 
affected by age, with systolic blood pressure being increasingly under-
estimated and diastolic blood pressure being increasingly overesti-
mated with increasing age, compared to invasive aortic blood-pressure 
measurements163. Therefore, personalized blood-pressure measures 
are required to normalize for age.

Skin-tone bias. Wearable sensing systems measuring arterial oxyhae-
moglobin saturation by pulse oximetry perform worse in individu-
als with darker skin tones compared to those with lighter skin tones, 
owing to differences in skin absorption and scattering characteristics 
influenced by melanin levels164,165. The calibration parameters of these 
devices are often biased towards individuals with lighter skin tones166, 
and inaccuracies in pulse oximetry measurements can result in the 
under-detection of hypoxia and sleep apnoea167,168. Importantly, such 
measurements are used by insurance companies to determine eligi-
bility for medical reimbursement, and thus, systemic errors in pulse 
oximetry measurements can further promote inequities in healthcare.

The low performance of PPG on darker skin can be addressed by 
the MagWear system129. Similarly, inaccurate pupillometry results in 
individuals with darker irises can be addressed through the use of a 
smartphone-based filter to perform the test in the far-red visible light 
spectrum72.

Cultural bias. Mobile systems that rely on speech detection and tran-
scription to assess mental health may perform poorly on a diverse range 
of accents if primarily trained on a single accent169,170. Speech-based 
health-sensing systems that rely on vocal prosody to detect mood 
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may function differently for English compared to tonal languages, 
such as Mandarin169,170. Digital phenotyping systems may leverage 
psychological models of stress, anxiety and depression, which cannot 
be generalized across cultures171. Diet-tracking systems for individuals 
with diabetes are often optimized for specific diets and may thus inac-
curately estimate the glycaemic response to diverse foods172. Moreover, 
religious headwear should be accounted for in systems that require 
head-mounted sensors, such as EEG sensors or heads-up displays173.

Medical history bias. Pre-existing medical conditions can act as a 
confounding factor, affecting the accuracy of sensing technologies. 
For example, arrhythmias and irregular heart rhythms affect the shape 
of the PPG waveform and can affect measurements of heart rate, heart 
rate variability and blood-oxygen saturation174. Diseases that affect 
movement, such as Parkinson’s disease, can result in motion artefacts in 
PPG waveform measurements. Medications can also introduce biases; 
for example, beta-adrenergic-blocking drugs can increase heart-rate 
variability175; endocrine medications for thyroid disease can affect 
drug metabolism176; and psychiatric medications, such as selective 
serotonin reuptake inhibitors and antidepressants, affect the heart 
rate177 and can cause sleep disorders, such as apnoea and bruxism178. 
Such medication-induced variations can lead to false-positive or 
false-negative readouts in medical devices that monitor sleep or car-
diac conditions. Therefore, patient-specific calibration protocols and 
alternative sensing modalities might be required.

Digital literacy bias. Lack of or limited literacy of users and/or health-
care professionals as well as limited implementation of electronic 
health record systems can negatively affect the effectiveness of 
mobile medical systems179–181. This might be addressed by providing 
user interfaces and instructions that rely on graphics, video and voice 
guidance. By integrating mobile medical systems into the continuum 
of care, provider-assisted onboarding and training can also help to 
increase adoption of these systems. In addition, public health policies 
to increase access to computing devices and training on digital health 
technologies might promote the deployment of digital health systems.

Trust in mobile health systems
Establishing trust is an important factor in the deployment of mobile 
health systems. Sensors in mobile health systems can capture sensitive 
data beyond health information. For example, cameras and micro-
phones might capture sensitive and identifiable data, such as the user’s 
face, surrounding environment, data from bystanders61–68 and voice 
data38. Although privacy concerns might be partly addressed by tech-
nological mitigation strategies, such as data processing at the edge, 
data obfuscation, filtering and anonymization, data leaks, unauthorized 
access and data exploitation remain concerns182.

Maintaining patient privacy
Built-in privacy-preserving technologies can minimize data leakage 
while maintaining device performance.

Edge computing. Mobile medical systems that rely on machine learn-
ing models to process sensor data might send data to the cloud for 
further processing, which bears the risk of data being compromized 
in transit or at the server. Running algorithms and models on an edge 
computing device, such as smart devices, mobile central processing 
units and mobile graphics processing units, can help to preserve patient 
privacy. However, the model has to be optimized for the constrained 

computational resources of mobile or embedded devices, while main-
taining a high level of clinical accuracy. Optimization techniques, 
such as pruning183, quantization184, knowledge distillation185, model 
compression186, low-rank factorization187 and neural architecture 
search188, can help to reduce model size, inference time and memory 
footprint to enable deployment on edge devices.

Federated learning. By re-training a model with new patient data using 
federated learning189,190, local models can be trained on edge devices, 
and only encrypted model updates are sent to a central server, where 
they are aggregated. An updated model is then sent back to the local 
devices. This strategy allows hospitals to comply with privacy regula-
tions, such as the Health Insurance Portability And Accountability 
Act (HIPAA) and the General Data Protection Regulation (GDPR), by 
ensuring that patient data stays within the institution191.

Privacy-preserving techniques can also be designed at the hard-
ware level; for example, inaudible frequencies can be used in sensors 
that assess behavioural biomarkers in digital phenotyping systems192, 
or depth or thermal cameras can be applied instead of RGB cameras 
for vision-based systems50 At the software level, secure enclaves and 
homomorphic encryption can be used193.

Improving explainability
Black box machine learning models, for which the underlying mech-
anistic information is lacking, might also compromise trust. For 
patients, intuitive and non-technical (plain language) explanations 
and colour-coded risk scores can increase the accessibility of medical 
information194. In addition, generative AI can create synthetic medical 
images for patient education195. Healthcare personnel can benefit 
from saliency maps196 that highlight relevant regions in a medical 
image to help them to understand a model’s focus and build trust 
in the system. Similarly, concept-based explanations can translate a 
model’s prediction into familiar medical concepts197. Concept activa-
tion vectors197 can be used in the diagnosis of diabetic retinopathy 
from retinal fundus images198, providing a score for different diag-
nostic concepts, which might help in the interpretation of a model’s 
predictions and flag instances in which healthcare professionals 
disagree with the model.

Shapley values199 quantify how much each feature contributes to 
a model’s prediction. For example Prescience200 uses Shapley values to 
provide a numeric representation of hypoxaemia risk (odds ratio) and 
quantify the contribution of pulse level, tidal volume, body-mass index 
and other factors to the prediction. Local interpretable model-agnostic 
explanations201 allow physicians to assess how perturbations to these 
different features affect the model’s predictions and whether the 
model’s responses align with their medical knowledge.

Building trust with patients and the public
The integration of mobile medical systems into clinical workflows and 
endorsement by healthcare professionals and institutions can increase 
a patient’s trust. Ensuring compatibility with electronic health record 
systems and telemedicine platforms can further facilitate adoption and 
reinforce the credibility and reliability of systems. Patient–provider 
interactions are also important in building trust through face-to-face 
interactions, training and guidelines for standardized use182. Moreo-
ver, deployment by reputable service providers, publications and 
endorsements increase trust182, in addition to compliance with data 
privacy regulations, such as HIPAA and GDPR, as well as cybersecurity 
certifications, such as ISO 27001 for data security202–204.
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Sociodemographic factors can affect a patient’s trust in a mobile 
medical system. Systems which are difficult and cumbersome to use 
can negatively affect a user’s confidence in digital health technologies 
and their effectiveness205. Intuitive user interfaces with clear graphics 
and videos, multilingual support and customer service hotlines for 
personalized training can increase access and accommodate a range 
of users182,206. Moreover, users can be provided with granular control 
over data collection, storage and sharing capabilities by enabling opt-in 
permissions and consent, the ability to delete stored data and explicit 
requests for data sharing. In addition, real-time privacy indicators, such 
as status lights when a system is collecting data, can reduce uncertainty 
about unauthorized recordings207,208.

Users should also be provided with a channel to report concerns 
about system performance and shortcomings, such as feedback forms 
to report false-positive or false-negative results. Periodic software 
updates to algorithms, models and security architecture can also 
increase trust and system reliability.

Regulatory considerations
Mobile medical systems face distinct regulatory challenges, including 
variability in hardware sensors and software application programming 
interfaces across different models.

Software as a medical device quality management system
The hardware in mobile medical systems is not considered a medical 
device hardware. The FDA provides regulatory guidance for mobile med-
ical systems that leverage sensors on smart devices. The guidance for 
mobile medical applications and software as a medical device (including 
the quality management system and the requirements for production 
engineering) regulates the custom software application, not the hard-
ware of smart devices, which reduces the costs for regulatory clearance. 
The FDA has approved mobile medical systems that leverage device 
sensors, such as microphones and cameras; for example, sonar-based 
breathing monitors using a smartphone or smart speaker have obtained 
FDA clearance under software-as-a-medical-device guidelines and via 
the 510(k) pathway.

According to the medical device academy (a quality and regulatory 
consulting firm for FDA 510(k) submissions) the cost of human clinical 
studies, which is required in only 10% of 510(k) submissions, ranges 
from US$250,000 to US$2.5 million. Simple clinical studies can cost 
less than US$100,000, whereas for mobile medical apps, which may 
only consist of software and fall under the software-as-a-medical-device 
guidelines, the testing costs might be lower.

Calibrating new mobile medical systems
The calibration of a new vision-based mobile medical system can be 
achieved with colour-calibration cards. For example, the urinalysis 
app Minuteful Kidney is an FDA-cleared class II medical device that 
uses a colour-calibration card. Users take a picture of a urinalysis dip-
stick against a colour-calibration card using a smartphone camera, 
and computer vision techniques take into account the camera’s col-
our profile and ambient lighting conditions to calibrate the captured 
image, enabling its application across different smartphone models 
and operating systems.

External attachments
Mobile health systems that rely on external components — such as 
3D-printed parts, paper-based tools requiring user assembly or a 
colour-calibration card that needs to be printed on paper or displayed 

on a screen — necessitate a regulatory strategy that determines whether 
the system is considered a finished or unfinished medical device. Unfin-
ished medical devices introduce variability in the assembly process, 
which can affect system performance and requires clear instructions 
and user testing. Alternatively, pre-fabricated and pre-assembled 
components can be provided to improve reliability and facilitate 
classification as a finished medical device.

Different operating system versions
Software applications that are built against the Android SDK (version 
29 and above, which is supported on Android 10 OS) are designed to be 
compatible with future versions of Android, as indicated in the Android 
API documentation. The SDK is designed to isolate applications and 
extensions to the Android OS, allowing app compatibility with future 
OS updates. In the case of iOS or other mobile operating systems, cali-
bration procedures may need to be created to ensure that sensor read-
ings can be interpreted across different OS versions and to mitigate 
the effect of changes to sensor application programming interfaces.

Clinical integration and automated interventions
Integration with the clinical continuum of care
Medical findings obtained by mobile medical systems need to be 
considered within the context of clinical care by integrating device 
readouts with medical records to facilitate informed decision-making. 
However, this requires electronic medical records that allow inter-
operability and adhere to data standards. For example, formats such 
as fast healthcare interoperability resources, to transfer data from 
mobile health systems to electronic health records, enable integration 
into clinical workflows209. Partnerships with public health authori-
ties, healthcare administrators, insurance companies and other key 
stakeholders may be needed to ensure inclusion of these findings in 
the medical record. Engaging with insurance companies to ensure a 
mobile medical test will be reimbursed using an existing or new current 
procedural terminology code might further promote their integration 
and adoption210.

Mobile medical systems could support the initial stages of the 
continuum of care by enabling the remote screening, diagnosing 
or monitoring of a medical condition. However, clinical oversight 
is important to ensure that the test is performed correctly and the 
result is interpreted within the context of a patient’s medical history 
and demographics, so that guideline-based interventions, personal-
ized treatment plans and rehabilitation and therapy can be imple-
mented appropriately. Therefore, mobile medical devices might 
not only increase access to healthcare but also aid in timely clinical 
decision-making without requiring a face-to-face consultation.

Closed-loop systems
Closed-loop systems can interpret measurements and automatically 
initiate clinical interventions. For example, a fall detection feature 
on a smart watch uses onboard motion sensors to detect and initiate 
an alarm if the user has fallen, automatically contacting emergency 
services and contacts. In a car crash detection feature, motion sensors 
detect severe car crashes, automatically calling emergency services if 
the user does not respond to a system-initiated alert. The Pixel Watch 
3 includes a loss of pulse detection feature that automatically calls 
emergency services if the user’s heart has stopped beating. Wristbands 
have been FDA-cleared for the detection of generalized tonic–clonic 
seizures for patients with epilepsy, alerting caregivers or emergency 
contacts.
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The Apple watch and FitBit watch also have features that do not 
strictly meet the definition of a closed-loop system, but provide a basic 
form of clinical interpretation; for example, the irregular heart rhythm 
feature and ECG app alert the user in the case of rhythms indicating 
atrial fibrillation, suggesting that a doctor be consulted.

In addition, an active-sonar system can be applied to detect 
opioid-induced respiratory depression10 to initiate the injection of 
naloxone and thus reverse an opioid overdose211. Moreover, passive 
acoustic sensing systems might be applied to detect biomarkers, such 
as agonal breathing29, to initiate contact with emergency services that 
can then perform cardiopulmonary resuscitation.

Outlook
Ensuring that timely in-person appointments with clinicians take 
place can be difficult in low-resource settings and rural areas. Mobile 
medical devices might expand access to health assessments. Mobile 
medical apps that leverage smartphone sensors for health sensing have 
received FDA clearance, demonstrating that smartphones can be used 
as a platform for healthcare delivery and to reduce health inequities. In 
addition, smart speakers, smart watches, wireless earbuds and smart 
eyewear can be applied to the continuous monitoring of emergent 
conditions such as cardiac arrests29 and mental health problems12,98,123, 
the ambient monitoring of surgeries and drug preparation in the oper-
ating room25,212, and hearing-loss screening in low- and middle-income 
countries23,24.

Various mobile medical systems that rely on built-in sensors of 
smart devices for health assessments have already passed regulatory 
clearance or are commercially available. For example, the active sonar 
technology for smartphones was FDA-cleared in 2021 as a respiratory 
monitoring app. This technology is also used by the SleepScore app 
to provide an index of sleep quality. The Pixel 8 Pro smartphone lever-
ages an infrared sensor to measure body temperature at the forehead, 
and is the first FDA-granted smartphone app for body-temperature 
monitoring, classified under the ‘de novo’ category. A smartphone’s 
thermister can also be applied to measure body temperature across 
different smartphone models213. The Google Fit app for Pixel phones 
relies on computer-vision techniques to measure respiratory rate from 
the front-facing camera by examining small movements of the chest, 
as well as heart rate by placing a finger on the rear-facing camera and 
tracking subtle changes in colour. The Digital Wellbeing app checks 
coughing and snoring activity using passive acoustic sensing to detect 
the distinct acoustic fingerprints associated with these body sounds. 
Sleep sensing algorithms have also been integrated into smart devices. 
For example, Nest Hub devices leverage mmWave radar to detect an 
individual’s movement, and measures sound, light and temperature to 
assess sleep quality by machine learning. Fitbit uses the heartbeat and 
IMU signal to estimate sleep stage. The Apple Watch and Pixel Watch 
apply motion sensors for car crash detection, fall detection and loss 
of pulse detection. The Apple Watch and FitBit watch also have an ECG 
sensor for detecting irregular heart rhythms suggestive of atrial fibril-
lation. The Samsung Galaxy Watch can measure body composition 
(body-fat percentage, body-water content, skeletal muscle mass) using 
bioelectrical impedance analysis. The watch can also measure blood 
pressure using the onboard PPG sensor. Smart rings, such as the Oura 
Ring, can monitor heart rate and blood oxygen, and measure body 
temperature to predict the start of the menstrual period.

In addition, mobile medical systems might have an impact in tel-
emedicine, precision healthcare, long-term health monitoring and 
disease detection.

Expanded medical tests for telemedicine visits
Healthcare can be made more accessible by increasing the number of 
medical tests that can be performed remotely through a telemedicine 
appointment and mobile medical systems214,215. For example, mobile 
medical systems might enable low-cost ultrasound imaging, vital-sign 
monitoring of a fetus and biofluid testing. However, they require a 
similar level of accuracy to in-clinic assessments, allow untrained users 
to perform the test, provide results that are interpretable by both the 
patient and healthcare provider and protect patient privacy.

Small-data mobile systems for precision healthcare
Machine learning systems for medical diagnostics are typically built on 
large datasets that should represent the entire population. For example, 
speech-recognition technology requires training with a variety of words, 
phrases and accents. However, this would require mobile systems that 
can be fine-tuned using orders-of-magnitude less data than current 
systems, for example, by applying few-shot- or zero-shot-based learning 
methods.

Ambient sensing systems for long-term health monitoring
Smartphones, smart watches and smart speakers might also enable 
long-term continuous monitoring; for example, ambient monitoring 
systems can track medical events over time in a contactless manner. 
Such ambient sensing systems could also be designed to detect recur-
ring events, such as seizures, and to learn from an individual’s distinct 
physiological patterns to become more accurate. In addition, these 
systems can leverage audible biomarkers to track long-term changes 
in vocal patterns and measure the progression of cognitive disorders, 
such as dementia and Alzheimer’s disease. However, they need to be 
privacy-preserving.

Sensors for disease detection
Dogs and insects can smell diseases, such as COVID-19 (ref. 216), 
diabetes217 and cancer218–220. However, even the best electronic sen-
sors are substantially less sensitive than biological sensing systems. 
Biomimetic electronic or biohybrid sensors that can detect the pres-
ence of disease from gaseous chemical compounds in breath or scent221, 
with the help of machine learning algorithms, could be integrated into 
mobile and non-invasive diagnostic tools, for example, to track the 
health of individuals in public spaces or to create a real-time barometer 
of a city’s health and track the outbreak of diseases.
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