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Passive Acoustic Monitoring (PAM) is emerging as a valuable tool for assessing fish pop-
ulations in natural habitats. This study compares two deep learning-based frameworks:
(1) a multi-label classification system (SegClas) combining Convolutional Neural Networks
(CNNs) and Long Short Term Memory (LSTM) networks and, (2) an object detection ap-
proach (ObjDet) using a YOLO-based model to detect, classify, and count sounds produced
by soniferous fish in the Tagus estuary, Portugal. The target species-Lusitanian toadfish
(Halobatrachus didactylus), meagre (Argyrosomus regius), and weakfish (Cynoscion regalis)-
exhibit overlapping vocalization patterns, posing classification challenges. Results show both
methods achieve high accuracy (over 96%) and F1 scores above 87% for species-level sound
identification, demonstrating their effectiveness under varied noise conditions. ObjDet gen-
erally offers slightly higher classification performance (F1 up to 92%) and can annotate each
vocalization for more precise counting. However, it requires bounding-box annotations and
higher computational costs (inference time of ca. 1.95 seconds per hour of recording). In
contrast, SegClas relies on segment-level labels and provides faster inference (ca. 1.46 sec-
onds per hour). This study also compares both counting strategies, each offering distinct
advantages for different ecological and operational needs. Our results highlight the potential
of deep learning-based PAM for fish population assessment.
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I. INTRODUCTION1

Monitoring marine ecosystems is crucial for protect-2

ing biodiversity and maintaining ecological balance (Wat-3

son et al., 2019). Traditional survey methods, such as4

trawling and visual observations, can be costly, labour-5

intensive, and often disruptive to aquatic life, or even6

impossible in certain locations/depths. In contrast, pas-7

sive acoustic monitoring (PAM) is emerging as an at-8

tractive alternative for continuous, non-intrusive assess-9

a)Equal contribution to the algorithm development and data anal-
ysis.
b)Equal contribution to the scientific coordination

ment of underwater soundscapes, enabling researchers to10

capture the presence and behaviour of marine organisms11

through their vocalizations (Boelman et al., 2007; Kvsn12

et al., 2020; Ribeiro et al., 2022). Ecoacoustic data from13

marine soniferous animals can provide insights into repro-14

duction, niche disputes, distribution and potential habi-15

tat shifts — all critical information for ecological manage-16

ment and conservation strategies (Amorim et al., 2023;17

Bolgan et al., 2023; Marques et al., 2013; Stratoudakis18

et al., 2024; Van Hoeck et al., 2021).19

The Tagus Estuary in Portugal presents an ideal set-20

ting to advance these monitoring approaches, given its21

ecological complexity and the co-occurrence of multiple22

highly soniferous fish species, including the Lusitanian23
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toadfish (Halobatrachus didactylus), meagre (Argyroso-24

mus regius), and weakfish (Cynoscion regalis) (Amorim25

et al., 2023; Vieira et al., 2021a). These species often26

produce overlapping calls, further complicated by con-27

founding factors such as significant intra-specific varia-28

tion on the toadfish’s vocal repertoire, minimal inter-29

specific variation between the meagre and weakfish’s30

calls, variable ambient noise (both natural and anthro-31

pogenic), and varying distances between fish and hy-32

drophones (Amorim et al., 2008, 2023; Vieira et al.,33

2021a). Traditional acoustic detection systems relying34

solely on amplitude thresholds or human-driven anno-35

tation can struggle with such complex acoustic scenes,36

especially when signal-to-noise ratios are low or multiple37

species vocalize simultaneously (Guyot et al., 2021).38

Recent advances in deep learning have provided pow-39

erful tools for analysing high-dimensional signals and ex-40

tracting robust features directly from data (Mouy et al.,41

2024). Among these, convolutional neural networks42

(CNNs) are particularly effective in identifying localized43

spectral structures (Rippel et al., 2015). In contrast,44

recurrent architectures such as long short-term mem-45

ory (LSTM) networks excel at capturing temporal de-46

pendencies (Lai et al., 2018). Meanwhile, object detec-47

tion frameworks exemplified by You Only Look Once48

(YOLO)-based models offer a complementary strategy49

by annotating individual call instances in time-frequency50

representations through a single forward pass (Jiang51

et al., 2022). Due to its relatively small model size and52

high inference speed, both approaches can directly out-53

put class predictions, especially suited for real-time tasks54

in complex underwater acoustic scenes. In aquatic bioa-55

coustics, these methods help address challenges posed56

by overlapping vocalizations, unpredictable noise condi-57

tions, and class imbalance. This offers an advantage over58

other developed systems for recognizing fish sounds (Mal-59

fante et al., 2018; Monczak et al., 2019; Vieira et al.,60

2015) , which often struggle with overlapping vocaliza-61

tions, subtle sound type differences (e.g., meagre vs.62

weakfish, as noted by Amorim et al. (2023)), and slow in-63

ference speeds. Moreover, the use of CNNs is supported64

by widely available deep learning libraries, making these65

tools more accessible to researchers without a computa-66

tional background.67

In this study, we propose and compare two deep68

learning approaches for multi-label classification and69

counting of fish vocalizations in the Tagus estuary. The70

first, a multi-label segmentation-based classification sys-71

tem (SegClas), segments the audio into fixed intervals72

and uses a hybrid CNN–LSTM model to capture spectral73

and temporal features of each segment. The second, an74

object detection approach (ObjDet), employs a YOLO-75

based framework to detect and localize calls within spec-76

trograms, thus enabling a more fine-grained count of in-77

dividual vocalizations. Both methods integrate data aug-78

mentation strategies to address noise variability and aim79

to provide scalable solutions for real-world monitoring80

scenarios. We evaluate these systems on multiple metrics81

to assess their capacity for long-term, fully automated82

fish monitoring.83

II. METHODS84

A. Data Description85

The full dataset comprises 8.5 years of continuous86

recordings from the Tagus estuary, Portugal (April 22,87

2016–August 15, 2024), collected using a High Tech88

94 SSQ hydrophone (sensitivity of −165dB re 1V/µPa;89

+/ − 1dB from from 30Hz to 6 kHz; High Tech Inc.,90

Gulfport, MS, USA) anchored ca. 20 cm above the bot-91

tom. Data were recorded by a 16-bit, 16-channel logger92

(Measurement Computing Corporation LGR-5325) at 2293

kHz in 2016 (later down-sampled to 4 kHz) and at 4 kHz94

from 2017 onward. Depth at the site varied with tide95

(2–6 m). Due to logistic reasons, recordings are missing96

for the periods Oct 2019–Feb 2020 and July–Nov 2023.97

Tagus Estuary is an environment shared by three target98

fish species: Lusitanian toadfish, meagre, and weakfish,99

with the latter two sharing similar ecological and acous-100

tic niches (Amorim et al., 2023). The sounds made by all101

three species overlap considerably in both temporal and102

frequency domains, leading to notable classification chal-103

lenges(Amorim et al., 2023; Vieira et al., 2021a). While104

sounds produced by meagre and weakfish are typically105

detected between 100 and 800 Hz, and those of toadfish106

between 50 and 600 Hz, all three species can produce107

sounds up to 1 kHz. Temporally, meagre grunt calls typ-108

ically consist of up to approximately 100 pulses, with a109

pulse period generally between 16 and 22 ms. In contrast,110

weakfish grunt calls comprise 3 to 14 pulses, with a pulse111

period ranging from 50 to 90 ms (Amorim et al., 2023).112

Notably, toadfish boatwhistles can resemble meagre calls,113

and toadfish grunt trains can approximate weakfish vo-114

calizations in both temporal and frequency characteris-115

tics when the signal-to-noise ratio is low, further compli-116

cating species-level automatic classification. See supple-117

mentary materials for a visuallization of the different pat-118

terns. Additionally, frequent passage of small boats and119

local ferries near the logger introduces further challenges120

to automation (Vieira et al., 2020, 2021b). Informed121

by this expert knowledge of these species’ vocalizations,122

recordings for the training and test datasets were man-123

ually annotated using Raven Pro 1.6.51, through com-124

bined visual inspection of spectrograms and aural val-125

idation (see detail of each species’ calls in Fig.S1). A126

multi-label annotation scheme was employed to indicate127

species presence without differentiating call types. Sub-128

sequently, audio was segmented into 3-second clips — a129

duration selected to balance the capture of complete vo-130

calizations with the need to minimize overlapping sounds131

or noise.132

Figure 1 summarizes the distribution of recordings133

in the training and test datasets. The core training data134

comes from six days in July 2021, representing a con-135

strained scenario with limited data. To improve gener-136

alization across time and acoustic conditions, the train-137
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FIG. 1. Training and test data distribution. (a) Characteri-

zation of the training dataset, showing temporal distribution

by year, season and time of day. (b) Representation of the

test data across four years, all seasons, and three times of day.

(c-d) Proportional breakdown of segments by label combina-

tions in the (c) training and (d) test datasets, using a multi-

label one-hot encoding scheme: Y = (yt, ym, yw) for toadfish,

meagre, and weakfish, respectively. (e) Diagram showing the

distribution of labeled data for Lusitanian toadfish, meagre,

and weakfish in both datasets.

ing set was supplemented with short annotated segments138

from three additional days in 2017: 4 minutes from Jan-139

uary, 17 from April, and 7 from July (Fig. 1a). This140

targeted annotation strategy aimed to capture represen-141

tative vocalizations while balancing temporal and acous-142

tic diversity with the practical limits of manual labeling.143

The test dataset includes recordings from various144

times of day, all four seasons, and the years 2016, 2017,145

2020, and 2021 (Fig. 1b), capturing diel, seasonal, and146

interannual variation. Time points were chosen based147

on known fish vocal activity patterns (Vieira et al.,148

2021b). To prevent data leakage, training and test seg-149

ments—even from the same day—were taken from non-150

overlapping time intervals.151

Both datasets contain fish and non-fish sounds. Of152

these, 754 of 3,859 training segments and 2,837 of153

4,800 test segments lack fish vocalizations (Fig. 1c,d).154

The remainder feature single- or multi-species fish calls155

(Fig. 1e).156

B. Learning Approaches157

We propose two methods for detecting and classify-158

ing fish vocalizations—summarized in Figure 2—aimed159

at addressing key challenges in fish vocalization analysis.160

The first, SegClas, uses a CNN followed by an LSTM to161

perform multi-label classification on audio segments. The162

second, ObjDet, employs YOLO to identify and classify163

specific spectrogram regions for each fish species. Both164

methods can output all potential labels in a segment.165

However, SegClas does not pinpoint the exact location166

of each vocalization within the segment, nor does it dis-167

tinguish multiple simultaneous calls of the same species.168

In contrast, ObjDet provides bounding boxes and can169

count occurrences within a segment.170

1. SegClas171

Preprocessing We begin by normalizing each clip to172

a target root mean square (RMS) level specified in deci-173

bels (dB). This step ensures consistent loudness across174

samples. Following normalization, the processed signals175

are transformed into Mel spectrograms using the Short-176

Time Fourier Transform (STFT). Specifically, we use a177

sampling rate of 4 kHz, a window size of 256 samples178

(equivalent to 64 ms), a hop length (stride) of 64 sam-179

ples (16 ms), and a Hann window function.180

The magnitude spectrogram is then mapped onto the181

Mel scale via a triangular filter bank with nmel = 32,182

distributing center frequencies according to the human183

auditory perception range. We present here the results184

based on Mel spectrograms because it yields better re-185

sults than linear spectrograms. To ensure that extracted186

features focus on the target fish species while minimizing187

interference from high frequency and low frequency noise,188

each spectrogram is constrained within a predefined fre-189

quency range 80Hz ≤ f ≤ 1000Hz. Mean normalization190

is applied to the feature matrix.191

Since multiple fish vocalizations may be present si-192

multaneously within a given time frame, each audio sam-193

ple is labelled using a one-hot encoding scheme. We194

adopt a multi-label scheme to account for the possibility195

that multiple fish species may vocalize simultaneously196
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FIG. 2. Overview of the Integrated System Architecture. Left: Detailed schematic of the two processing pipelines. First,

4 kHz audio is divided into 3-second segments. In the SegClas pipeline, the audio is then normalized and converted into a

Mel spectrogram before being fed into the neural network. Meanwhile, the ObjDet pipeline is fed an FFT-generated, linear-

scaled spectrogram, which is represented as an RGB image. During training, data augmentation is randomly employed to

enhance robustness. The final fish species classification is determined by thresholding the network’s probability outputs. In

the YOLO-based detection mechanism, object bounding boxes are produced with class label and confidence scores. A segment

or box is classified as containing specific fish species sounds if the highest confidence exceeds a predefined threshold. Right:

The complete system flowchart, illustrating the overall process from data preprocessing through to model training and to label

generation.

within the same audio segment. For an audio sample197

x, we define its ground-truth label as a binary vector198

Y = [y1, y2, . . . , yC ] ∈ {0, 1}C where C is the total num-199

ber of fish species of interest, and yi = 1 if species i200

is present in the segment, or 0 otherwise. This same201

labeling scheme is later applied to our YOLO-based ap-202

proach(ObjDet) for consistency.203

Data Augmentation After extracting features, we204

independently (or randomly) apply a range of data aug-205

mentation methods, ensuring also a portion of unmodi-206

fied examples.207

We use time and frequency erasing augmentation.208

These methods randomly zero out portions of the spec-209

trogram along the temporal (∆t) and frequency (∆f)210

axes, simulating partial signal loss. Specifically, for each211

spectrogram, a frequency range [f1, f2] and a time inter-212

val [t1, t2] are randomly selected, where the erase widths213

are defined as f2 − f1 = ∆f and t2 − t1 = ∆t, respec-214

tively. Erased regions are zeroed, as commonly done in215

audio and image augmentation, to simulate silence or216

partial dropout in a controlled manner, simulating miss-217

ing information.218

Frequency shift augmentation is applied to the Mel219

spectrogram features to improve the system’s robustness220

against variations in the distance between a vocalizing221

fish, distortions in the acoustic sensor, and natural vari-222

ations in fish calls. This choice is motivated by our ob-223

servation that vocalizations from the same species may224

vary in frequency depending on biological and environ-225

mental factors. The shift magnitude is determined by226
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a maximum and a minimum, frequency deviation fshift,227

which is converted into a shift in Mel bins as follows:228

Smax = fshift

∆f , where ∆f is the average frequency interval229

between adjacent Mel bins. Once the shift magnitude is230

determined, each Mel spectrogram is randomly shifted231

along the frequency axis using a circular shift operation:232

F̃ = roll(F, s, dim = 2), where s is the randomly selected233

shift within the allowed range (max frequency shift is234

100 Hz in this case), and the roll operation ensures that235

spectral content is smoothly adjusted without introduc-236

ing artifacts.237

Finally, we also apply mixup (Zhang, 2017) to fur-238

ther improve generalization and robustness to overlap-239

ping calls. In mixup, two training spectrograms (X1, y1)240

and (X2, y2) are linearly combined with a mixing ra-241

tio λ, drawn from a Beta distribution, to form: X ′ =242

λX1 + (1 − λ)X2, y′ = λ y1 + (1 − λ) y2. Here, X ′ is243

the new spectrogram, and y′ is the corresponding multi-244

label vector. By generating such interpolated examples,245

mixup simulates scenarios in which multiple fish vocaliza-246

tions are partially blended, thus enhancing the model’s247

robustness to noise and call overlap.248

Network Architecture We adopt the lightweight 18-249

layer variant of the ResNet architecture (ResNet18) (He250

et al., 2016) as the feature extractor, leveraging residual251

connections to help maintain stable gradients. Given an252

input Mel spectrogram X, the ResNet18 model extracts253

high-level feature representations, denoting F as the fea-254

ture map F = ResNet18(X).255

While CNNs excel at capturing local spectral pat-256

terns, they are limited in modelling long-term temporal257

dependencies. To address this, we integrate LSTM (Yu258

et al., 2019) after the ResNet18. The LSTM processes259

the sequence of feature embeddings F and learns the260

temporal relationships between different time frames:261

Ht = LSTM(Ft, Ht−1), where Ft is the feature repre-262

sentation at time step t, Ht is the hidden state of the263

LSTM at time step t, Ht−1 is the hidden state from the264

previous time step.265

Loss function For each audio sample, let ŷ ∈ [0, 1]C266

denote the predicted probabilities. The Binary Cross-267

Entropy (BCE) Loss for each class is computed as:268

LBCE = −y log(ŷ) − (1 − y) log(1 − ŷ). To optimize the269

multi-label classification task, we adopt Focal Loss (Lin270

et al., 2017) as loss function, which is particularly suited271

for handling class imbalance by down-weighting well-272

classified examples and focusing on hard-to-classify sam-273

ples: LFocal = α(1− pt)
γLBCE, where α is the balancing274

factor, γ is the focusing parameter and pt = exp(−LBCE)275

represents the probability of the correct class.276

We additionally introduce frequency-based atten-277

tion, label smoothing, and background sample weight-278

ing to focus on the relevant frequency bands, mitigate279

mislabelled examples, and appropriately handle record-280

ings without fish vocalizations. Given a frequency acti-281

vation matrix A extracted from the input spectrogram,282

the frequency weight vector is computed as: Wfreq =283

max(0,AWT
band)∑

j max(0,AWT
band)+ϵ

, where Wband represents the prede-284

fined frequency band relevant for each class, and ϵ is a285

small constant to avoid division by zero. Specifically, we286

define Wband by highlighting the typical call frequency287

ranges of our target fish species (e.g., 50–600Hz for toad-288

fish), as identified in prior studies. This ensures that the289

loss function emphasizes the acoustically relevant bands290

for each species, reducing interference from out-of-range291

frequencies. The focal loss is then adjusted using this292

weight: Lweighted = WfreqLFocal. Furthermore, to en-293

hance model robustness, we apply label smoothing and294

incorporate background sample loss weighting to han-295

dle samples without identifiable fish vocalizations. Since296

some audio samples contain no identifiable fish vocaliza-297

tions, we introduce parameter background loss weighting.298

Given that, a sample is labelled as no target if the sum299

of its ground-truth labels satisfies
∑C

i=1 yi < ϵ.300

Finally, we define two separate loss terms:301

Lno target = Wbg · Lweighted, Ltarget = Lweighted. where302

Wbg is a predefined weight to emphasize background303

samples. Overall, the total loss is then computed as:304

Ltotal = aLtarget+bLno target, where a and b are weighting305

coefficients to control the relative contribution of target306

and background losses.307

Network Output The network ultimately outputs a308

probability pc for each species c. How we convert these309

probabilities into binary labels (0 or 1) is described in310

Section IIC.311

2. Object Detection312

Preprocessing Since ObjDet uses YOLO object de-313

tection, a different preprocessing scheme is applied. The314

4 kHz audio is also cut into 3s segments but then it315

is converted into FFT-generated dB linear spectrogram316

with parameters window size = 256, hop length = 64,317

and hann window. These parameters optimize the differ-318

ences between the visual patterns of calls produced by the319

species of interest. For ObjDet, Mel spectrograms pro-320

duced inferior results; therefore, only results from linear321

spectrograms are presented. Frequencies above 1000 Hz322

are removed. Finally, as the underlying YOLO model is323

pre-trained on three-channel RGB images. We use Mat-324

plotlib’s Magma colormap, as it most closely resembles325

Raven Pro’s preferred colormap used for aural and visual326

inspection of the training and test datasets.327

Data Augmentation In addition to time and fre-328

quency augmentation, for ObjDet, we employ erasing,329

mixup, and saturation shift.330

Similarly to SegClas, ObjDet also employs erasing as331

a means of simulating missing information. This method332

randomly selects a rectangular patch of the image, de-333

fined by a frequency range [f1, f2] and a time interval334

[t1, t2], where the patch dimensions ∆f = f2 − f1 and335

∆t = t2 − t1 are randomly chosen with the constraint336

that the erased region’s area can only amount to 20% of337

the image. The erased region is set to zero, simulating338

missing information. The factor of 20% is not exceeded339

so it is highly unlikely that a fish sound would be com-340

pletely erased.341
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ObjDet uses mixup (Zhang, 2017) to improve gener-342

alization, similar to the approach described for SegClas343

mixup (see section II B 1). Here, however, the input is a344

three-channel dB spectrogram (rather than a Mel spectro-345

gram), mapped to RGB. Mixup combines two such spec-346

trogram images (X1, X2) with labels (y1, y2) by drawing347

a mixing ratio λ from a Beta distribution, then forming348

an interpolated sample. During training, for each sam-349

ple independently, there is a 20% chance that mixup is350

applied.351

Lastly, saturation shift adjusts the brightness, con-352

trast, and color properties of the images to simulate di-353

verse signal to noise conditions. This can be defined by354

the parameter ∆s (saturation shift) defined in a range355

of [0, 20%]. For each augmentation, a random value is356

chosen from this range.357

These augmentations are not applied to the training358

data before training begins, but just-in-time randomly359

for each training batch using RandAugment (Cubuk360

et al., 2020).361

Learning System We use the pre-trained YOLO ver-362

sion 11 nano (Khanam and Hussain, 2024) for our object363

detection-based approach. We choose this smallest vari-364

ant in terms of parameters, as our dataset is relatively365

limited and contains only 3,848 training samples across366

three classes. The generated 3s segment spectrograms367

have a resolution of 188×64 pixels. Since YOLO requires368

input dimensions to be multiples of 32, we resize the spec-369

trograms to 192×64 pixels.370

C. Postprocessing371

Fish calls can overlap, so we treat each 3-second seg-372

ment as a multi-label classification problem: multiple373

species may appear simultaneously within the same au-374

dio clip. Both SegClas and ObjDet eventually produce a375

confidence score confc(x) for each species c ∈ {1, . . . , C}.376

In SegClas, this score (confc(x)) is directly the net-377

work’s probability output pc. In ObjDet, the model378

is fine-tuned on our dataset using standard object de-379

tection, so its immediate outputs consist of bounding380

boxes accompanied by class labels and confidence scores.381

Note that while ObjDet is trained via standard object382

detection (bounding boxes + class scores), at inference383

time we aggregate per-class box confidences to gener-384

ate a single segment-level score. To derive a multi-label385

classification for each 3-second spectrogram, we define:386

confc(x) = max
{
box conf | box.class = c

}
, where387

box conf is the confidence associated with a bounding388

box labeled as species c. If no boxes are labeled with389

species c, then confc(x) = 0.390

To convert these continuous scores into binary pres-391

ence/absence predictions ŷc ∈ {0, 1}, we apply a thresh-392

olding step: ŷc = 1if confc(x) ≥ Tc, and 0 otherwise.393

Because this is a multi-label setting, multiple ŷc may be394

1 (i.e., multiple fish species can co-occur).395

Instead of applying a single universal threshold396

across all classes, we determine a separate Tc for each397

species by maximizing the F1 score (see Section IID)398

on a validation split: Tc = argmax F1
(
Ŷc,τ , Yc

)
, τ ∈399

[0, 1] where F1 measures precision–recall balance be-400

tween ground-truth Yc and the model predictions Ŷc,τ ,401

binarized at threshold τ . This class-specific approach ac-402

commodates differences in call duration, signal-to-noise403

ratio, and background interference among the target fish404

species.405

D. Evaluation Metrics406

The evaluation metrics used in this study are stan-407

dard for multi-label classification and object detection408

tasks. These metrics were computed on the test dataset409

described in Section IIA. Metrics were assessed using a410

hybrid cross-validation approach to ensure an indepen-411

dent test set evaluation, with the test set remaining un-412

seen during training. The training data underwent 5-fold413

cross-validation, producing five models, each evaluated414

on the fixed test set to provide a robust performance es-415

timate.416

Classification Metrics We evaluated the perfor-417

mance using precision, recall, F1 score, and accuracy as418

follows:419

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1 = 2× Precision× Recall

Precision + Recall
,

Accuracy =
TP + TN

TP + TN + FP + FN
,

where TP, TN, FP, FN are true positive, true negative,420

false positive, and false negative, respectively.421

A high precision indicates that most segments clas-422

sified as fish indeed contain fish calls (i.e., good cor-423

rectness), but does not reveal how many fish calls were424

missed. In contrast, a high recall signifies that the system425

has found a large proportion of the actual fish calls (i.e.,426

good coverage), but does not indicate how many non-fish427

segments were incorrectly labeled. Consequently, preci-428

sion and recall must both be considered to fully under-429

stand a detector’s performance, which is why the F1 score430

combines them into a single measure (ranging from 0 to431

1). Finally, accuracy measures the fraction of segments432

(fish or non-fish) correctly labeled overall.433

Additionally, we computed subset accuracy (also434

known as exact match), which measures the proportion of435

segments where the predicted and ground-truth label sets436

match exactly: Subset Acc. = 1
N

∑N
i=1 I(ŷi = yi), where437

ŷi is the predicted label set and yi is the ground-truth438

label set for sample i, and I(·) is the indicator function439

which is 1 when ŷi = yi, and 0 otherwise. Note that this440

stricter metric penalizes any incorrect species label in a441

segment, making it harder to achieve high subset accu-442

racy when multiple fish may vocalize simultaneously.443

For each fish species, we computed precision, recall,444

F1 score, and accuracy in a one-vs-all manner, that is,445

assuming a binary classification for each species. Addi-446

tionally, F1 score, accuracy, and subset accuracy were447
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calculated in full. All metrics were calculated for both448

SegClas and ObjDet approaches.449

Count Estimation Metrics To assess count estima-450

tion accuracy, we calculated Relative Error (RE) for each451

class: REc = |n̂c−nc|
nc

, where n̂c and nc are the pre-452

dicted and ground-truth segment-based counts for class453

c, respectively. Note that we can use two counting ap-454

proaches: Segment-based count (default method)—Each455

classified segment contributes one count toward the cor-456

responding species. This approach provides a more stable457

estimate, particularly in dense choruses where individual458

vocalizations may be indistinguishable. Total count (Ob-459

jDet only)—Counts every detected vocalization based on460

the number of bounding boxes assigned to a species.461

Inference Time quantifies the average processing462

time for a 3-second audio segment, including spectrogram463

generation and classifier inference. This is reported as464

an average over the entire test dataset to assess compu-465

tational efficiency. Measurements were taken on a 2023466

M2 MacBook Pro with 16 GB of memory running Ma-467

cOS version 15.3.2 and using Apple’s Metal Performance468

Shaders (MPS) framework in PyTorch 2.5.1 to speed up469

inference.470

III. RESULTS471

In this section we evaluate the performance of Seg-472

Clas and ObjDet models for marine species vocalization473

detection across multiple fish species, comparing their474

accuracy metrics, classification capabilities, and tempo-475

ral prediction patterns through statistical analysis and476

visual examples. The thresholds are chosen as optimiz-477

ers of the F1 score on the training data. For SegClas478

the optimal thresholds according to the training data are479

(0.6, 0.56, 0.54) for (lt,m,w), respectively, while the op-480

timal thresholds for ObjDet are (0.25, 0.66, 0.25). These481

thresholds apply to the test data in the following re-482

sults. See supplemental materials for details on this483

choice. A demonstration, data, and code is available at484

https://github.com/NabiaAI/Argyrosomus.485

The evaluation results on the test data are summa-486

rized in Table I by the mean and standard deviation of487

the five folds. ObjDet generally outperforms SegClas by488

a small margin, with an F1 score of 92.0%, accuracy of489

97.4%, and subset accuracy of 92.8%, compared to 87.6%,490

96.5%, and 90.3%, respectively. For meagre classifica-491

tion, both models excel in different metrics, with SegClas492

producing much lower Count RE compared to ObjDet.493

For the weakfish, we also observe very high scores across494

most metrics in both approaches (≥ 85%), except for the495

F1 score and recall in SegClas. In the weakfish we ob-496

serve the highest count RE. For the toadfish, Count RE,497

ObjDet excels by a small margin on all metrics. Lastly,498

the inference time was also measured, SegClas is roughly499

25% faster than ObjDet.500

Figure 3 compares the multi-label confusion matri-501

ces of both models. This details where the models are502

especially prone to misclassifications. Both models seem503

TABLE I. Comparison of SegClas and ObjDet on test dataset.

Given numbers are means with their standard deviations from

repeated testing on a fixed test set using 5 fold cross-validated

training sets. The best results are underlined.
Metric SegClas ObjDet

F1 Score [%] 87.4 ± 1.3 92.0 ± 1.5

Accuracy [%] 96.6 ± 0.9 97.4 ± 1.0

Subset Acc. [%] 90.1 ± 1.1 92.8 ± 1.2

Inference Time per

Segment [ms]
1.22 1.63

Meagre

F1 Score [%] 93.3 ± 1.0 94.2 ± 1.2

Precision [%] 95.1 ± 0.9 98.8 ± 0.8

Recall [%] 91.7 ± 1.1 90.0 ± 1.4

Accuracy [%] 98.1 ± 0.8 98.0 ± 0.9

Count RE [%] 4.3 ± 0.7 9.8 ± 1.1

Weakfish

F1 Score [%] 82.7 ± 1.6 90.2 ± 1.8

Precision [%] 92.1 ± 1.1 96.4 ± 1.0

Recall [%] 75.2 ± 1.9 84.7 ± 2.2

Accuracy [%] 98.2 ± 1.2 98.0 ± 0.8

Count RE [%] 22.3 ± 1.5 13.9 ± 1.9

L. Toadfish

F1 Score [%] 86.6 ± 1.5 91.5 ± 1.7

Precision [%] 92.8 ± 1.2 95.4 ± 1.3

Recall [%] 81.8 ± 1.8 88.0 ± 2.0

Accuracy [%] 93.5 ± 1.0 95.1 ± 1.1

Count RE [%] 13.7 ± 1.1 8.4 ± 0.9

to particularly misclassify the segments with only toad-504

fish as noise (102 (10.6%) incorrect segments for SegClas,505

57 (5.9%) incorrect for ObjDet), the segments with both506

toadfish and meagre simultaneously as only meagre (62507

(28.8%) SegClas, 38 (17.7%) ObjDet), and the segments508

with toadfish and weakfish as only weakfish (41 (41.8%)509

SegClas, 25 (25.5%) ObjDet). For the remaining pair-510

ings, the numbers for SegClas and ObjDet are also very511

similar (difference < 15). Notably, the test dataset in-512

cluded a high proportion of non-fish segments, reflecting513

realistic conditions in continuous recordings. Both mod-514

els maintained a true negative rate above 95%, indicating515

reliable discrimination between fish and non-fish sounds.516

Figure 4 shows qualitative examples of the inference,517

object detection, and classification process. Both models518

effectively identify a wide range of vocalizations across519

various signal-to-noise ratios (Figure 4a)), but can fail520

when dealing with extremely low signal-to-noise ratio vo-521

calizations (Figure 3b)). Examples like Figure 4b) illus-522

trate instances where sections containing both toadfish523

and weakfish sounds are labeled solely as weakfish. Mea-524

gre choruses (Figure 4c)) as well as overlapping sounds525

(Figure 4a)) are well recognized. Other mistakes include526

background noise that resembles low signal-to-noise ratio527

meagre calls (Figure 4d)), and low-frequency noise which528

is misclassified as toadfish (Figure 4e)). Furthermore,529

distinguishing weakfish grunts within meagre knocking530

sounds is generally challenging for both models (Fig-531
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FIG. 3. Multi-label confusion matrices of SegClas (top) and

ObjDet (bottom) on test dataset. The numbers represent

total 3s-segment classifications of the best model of each ap-

proach. lt - Lusitanian toadfish, m - meagre, w - weakfish.

ure 4f)). In the test dataset, many errors in segments532

containing both meagre and weakfish calls occur within533

these knocking sounds, where such sections are often534

misidentified as meagre only or as no-fish (see Figure 3).535

Furthermore, distinguishing rarer toadfish sounds, such536

as the double-croak, was occasionally challenging for Seg-537

Class (Figure 4g), Figure 4h)).538

Figure 5-a) shows a comparison of both models on539

the test data in more detail. Additionally, for ObjDet,540

the number of total vocalizations (as opposed to segment-541

based vocalizations) is shown in Figure 5-b). Both figures542

give the date and point in time of the 10 min interval the543

counts were accumulated in. During winter, when fish544

vocalizations are nearly absent, the number of detections545

is correspondingly low. Both models show the largest546

discrepancy on April 18, 2021 at 4 pm for weakfish. On547

the same interval, meagre performance is also off. Visual548

inspection revealed that this time interval features high549

noise levels (electro-static noise and a boat passing by).550

On July 6, 2021 the largest discrepancy for Toadfish is551

observed. When comparing Figure 5-a) to Figure 5-b),552

it is evident that Figure 5-b) exhibits smaller relative553

errors. However, additional discrepancies were found in554

Figure 5-b) on July 24, 2017, with approximately 100555

false negatives for toadfish calls.556

Additionally, Figure 6 shows predicted segment-557

based counts of both models on 24-hour continuous558

FIG. 4. Qualitative examples of the inference, object detec-

tion, and classification process. The shown spectrograms of

3 s audio segments are annotated with bounding boxes by

ObjDet. Underneath the annotated spectrograms, the classi-

fications are given by the ground-truth (GT), by ObjDet, and

by SegClas. Green indicates correct boxes or classifications,

while red indicates incorrect ones. Spectrograms were pro-

duced with fast Fourier transform (FFT) = 256, frequency in

a linear scale from 0 up to 1 kHz, and a time frame of 3 s.

recordings from April 19, 2017 and April 27, 2021, along-559

side corresponding long-term spectrograms. Figure 6-a)560

shows a distinct meagre chorus between 4 pm and 10 pm.561

The predictions of both models are essentially the same562

during this phase. ObjDet predicts virtually no weakfish563

sound occurrence, which aligns with the known weakfish564

activity patterns for this day. However, SegClas incor-565

rectly predicts two smaller peaks of weakfish activity at566

4 pm and 9 pm, raising concerns about the model’s false567

positives. On the other hand, both models predict toad-568

fish activity throughout the day except for a break during569

the peak of the meagre chorus around 6 pm. ObjDet gen-570

erally reports higher levels of toadfish activity, which is571

consistent with the higher performance of this approach572

(see Table 1). In 2021 (Figure 6-b), both models are573

well-aligned in detecting the chorus activity of toadfish,574

meagre and weakfish. However, SegClas predicts slightly575

higher activity of weakfish from 12 am to 2 pm which is576

incorrect.577

IV. DISCUSSION578

Our study demonstrates the potential of using deep579

learning to analyze Passive Acoustic Monitoring (PAM)580

data, highlighting the feasibility of large-scale, non-581

invasive assessment of fish populations in complex es-582

tuarine environments. The high classification accu-583

racy and F1 scores of both deep learning frameworks584
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FIG. 5. Comparison of performance on test data between Ob-

jDet, SegClas, and ground-truth (GT). Figure 5-a) is showing

number of 3 s segments containing fish vocalization over the

time and date of the 10 min interval from which the count

originates. Figure 5-b) (only for ObjDet) is showing total

number of fish vocalizations over the same 10 min intervals as

Figure 5-a). Dotted lines indicate the difference of ObjDet to

gt and dashed lines indicate the difference of SegClas to gt.

validate their effectiveness in identifying and quantify-585

ing fish vocalizations, even under challenging acoustic586

conditions. Moreover, comparing object detection and587

classification-based approaches provides valuable insights588

into their respective strengths and trade-offs, informing589

future methodological choices based on ecological and op-590

erational needs. These findings emphasise the growing591

role of artificial intelligence in ecoacoustic monitoring,592

contributing to improve biodiversity conservation and re-593

source management strategies.594

A.Model Performance and Technical Insights595

We implemented and compared two deep learing ap-596

proaches for detecting and classify multiple sounds of597

multiple fish species: SegClas and ObjDet. SegClas is a598

classification-based method that assigns labels to entire599

audio segments, whereas ObjDet is an object detection-600

based approach that identifies specific vocal events within601

spectrograms. ObjDet can provide more accurate an-602

notation and higher accuracy and F1 scores. This ad-603

vantage stems from its ability to detect individual vocal604

events using YOLO’s bounding-box mechanism, which605

enhances precision (Redmon et al., 2016). On the other606

hand, SegClas offers a significant reduction in infer-607

ence time—approximately 25% faster than ObjDet—and608

requires only segment-level labels rather than detailed609

bounding-box annotations. This aligns with previous610

findings that reducing annotation overhead is crucial for611
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FIG. 6. Predicted fish calling activity using ObjDet (solid

lines, triangle markers) and SegClas (dotted lines, circle mark-

ers) over 24 hours. For this figure, the segment-based count

interval is 30 min. Long-term spectrogram (FFT sampling

rate 1024, hop length 512, window type Hann; averaged over

1 min bins) are shown for April 19, 2017 (a) and April 27,

2021 (b). The lines represent moving averages, and the or-

ange arrow (b spectrogram) marks the peak of calling activity

for the meagre and weakfish on that day.

large-scale ecological surveys (Demir et al., 2020; Jung612

et al., 2021). Even with high-performing detection mod-613

els, the burden of detailed labeling can be a limiting614

factor. By contrast, SegClas optimizes both speed and615

practicality, making it a compelling choice for real-time616

monitoring applications where computational resources617

are constrained.618

Our findings align with recent studies in marine bioa-619

coustics that have also applied ResNet CNNs for fish620

sound detection and classification. For instance, Waddell621

et al. (2021) used a pre-trained ResNet-50 for call-type622

classification of fish sounds, achieving F1 scores ranging623

from 0.44 to 0.77 across six call types. Compared to our624

results, these lower scores may be attributed to the chal-625
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lenges of multi-class classification, mainly when limited626

manual annotations are available for certain sound types.627

Similarly, (Munger et al., 2022) achieved an F1 score of628

0.86 for classifying damselfish sounds using a ResNet-50629

CNN, demonstrating strong performance, albeit slightly630

lower than ours. Additionally, Mouy et al. (2024) em-631

ployed a ResNet CNN to distinguish between ”fish” and632

”non-fish” sounds in a dataset of unidentified fish sounds,633

achieving an F1 score of 0.82. Notably, their study used634

shorter 0.2-second segments, which was appropriate given635

the predominant fish sounds in their dataset. In contrast,636

(Waddell et al., 2021) used 0.5-second segments, (Munger637

et al., 2022) used 2-second segments, and our study em-638

ployed 3-second segments.639

Other machine learning techniques have also been640

applied to annotated fish sounds. For instance, Malfante641

et al. (2018) employed both random forest and support642

vector machines to classify six fish call types, achieving643

F1 scores exceeding 0.90 and accuracies up to 96.9%.644

Noda et al. (2016) achieved an impressive F1 score of645

0.98 using an SVM-based algorithm for classifying sounds646

from 128 fish species. However, their work was limited647

by a smaller dataset that did not include noise record-648

ings, which could affect generalizability in real-world ap-649

plications. In fact, preliminary test in our study was re-650

stricted to a small dataset with less variability and with-651

out noise, and showed higher performance. Mouy et al.652

(2024) employed a combination of detection of acoustic653

transients in the spectrogram and the classification using654

Random Forest, achieving a low F1 score of 0.43 (against655

the F1 score of 0.82 obtained with ResNET on the same656

datasets).657

More relevantly, several studies have applied sound658

classification techniques to species examined in our study,659

as well as other members of the Sciaenidae family, which660

includes the meagre and the weakfish. For instance,661

Vieira et al. (2015) developed the first fish sound clas-662

sification system, which was based on hidden Markov663

models (HMMs) and applied to Lusitanian toadfish vo-664

calizations. This study focused on identifying sounds665

produced by individual males and also introduced a call-666

type recognition system. While it achieved high recall667

(> 90%) for the boatwhistle call type, it struggled with668

other call types produced by the species. In contrast, our669

study did not differentiate between specific call types.670

However, both SegClas and ObjDet successfully classi-671

fied most call types as belonging to the Lusitanian toad-672

fish. This suggests that future applications could leverage673

CNNs to detect and distinguish between the various calls674

of this species, which has a well-documented, diverse vo-675

cal repertoire Amorim et al. (2008). A key advantage676

of Vieira et al. (2015) technique is its ability to anno-677

tate individual calls, enabling the extraction of ecologi-678

cally relevant features (e.g., call duration). However, it679

struggled with overlapping calls. In our study, the Ob-680

jDet approach, using YOLO’s bounding-box mechanism,681

offers the same advantage while demonstrating greater682

accuracy in identifying overlapping calls. Vieira et al.683

(2019) also employed an HMM-based system to detect684

and classify meagre calls over seven months of contin-685

uous data recorded in captivity. While the system ef-686

fectively tracked calls of interest with 78% accuracy, it687

faced challenges in classifying sounds based on prede-688

fined categories. This difficulty sparked a discussion on689

the proper definition of the true call types of this species690

(Bolgan et al., 2020). Using this same technique, a sys-691

tem was also successfully employed to track the choruses692

produced by meagre in the wild over a four-year period,693

achieving an accuracy of 96.7%. However, it was not de-694

signed to distinguish between the sounds of this species695

and those of the newly invasive weakfish (Vieira et al.,696

2022). Overall, both SegClas and ObjDet performed697

well in handling choruses with these two species, how-698

ever SegClas exhibited false positives for weakfish when699

only meagre choruses were present (see Figure 6). While700

scienid species are known to produce continuous cho-701

ruses on certain days (Vieira et al., 2022), our record-702

ings were predominantly dominated by meagre, likely703

because weakfish schools are usually positioned farther704

from the hydrophone (Matos et al., 2024). In other loca-705

tions, where both species might produce overlapping con-706

tinuous choruses, their differentiation may pose different707

challenges. Other systems, such as support vector ma-708

chines (SVM), k-nearest neighbors (k-NN), periodicity-709

coded non-negative matrix factorization (PC-NMF), and710

Gaussian mixture models (GMM), as well as simpler711

sound detectors, have also been applied to the analysis of712

sounds and choruses in other sciaenid species, as well as713

in choruses from other families (Harakawa et al., 2018;714

Hawkins et al., 2025; Lin et al., 2018; Monczak et al.,715

2019; Siddagangaiah et al., 2019).716

B. Biological and Ecological Implications717

From an ecological viewpoint, both methods demon-718

strate potential for long-term PAM in dynamic estuar-719

ine systems such as the Tagus estuary. This location720

features overlapping calls from Lusitanian toadfish, mea-721

gre, and weakfish, often intertwined with environmental722

and anthropogenic noises (Amorim et al., 2023; Vieira723

et al., 2021a). Effective discrimination among these taxa724

is fundamental for understanding their spatiotemporal725

distribution, mating periods and spawning sites, and gen-726

eral habitat usage (Lindseth and Lobel, 2018). For in-727

stance, accurate detection of chorusing behaviors can in-728

form peak spawning windows, aiding marine managers729

in determining critical conservation periods or adjusting730

fishery regulations (McWilliam et al., 2017; Stratoudakis731

et al., 2024). Additionally, monitoring invasive species732

like the weakfish can prompt adaptive management in-733

terventions (Amorim et al., 2023; Lodge et al., 2016; Stra-734

toudakis et al., 2024).735

The SegClas approach, with its lighter annotation re-736

quirements, facilitates swift deployment in regions where737

extensive bounding-box labeling is unfeasible. Ecolog-738

ically, this allows researchers to expand monitoring to739

multiple sites and gather broad-scale temporal data on740

fish assemblages. Meanwhile, ObjDet addresses scenar-741
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ios where precise call localization is essential—for exam-742

ple, studying fine-scale interactions between co-occurring743

species, quantifying vocalization rates within choruses,744

or investigating how anthropogenic disturbances (e.g.,745

boat traffic) may affect fish call dynamics that can un-746

derlie reproductive success. (Vieira et al., 2022, 2024).747

Although ObjDet offers higher accuracy in many met-748

rics, the added computational cost and annotation effort749

may limit its adoption in resource-constrained projects.750

Thus, the best method depends on balancing logisti-751

cal constraints (e.g., labeling budget, hardware capacity)752

against ecological questions of interest.753

C. Remaining Challenges and Future Directions754

Despite robust data augmentation (time-frequency755

erasing, frequency shifting, mixup), certain classifica-756

tion errors persisted. Overlapping calls among acousti-757

cally similar species remain a bottleneck, particularly in758

dense choruses (Gibb et al., 2019). Further refinements759

could involve hybrid architectures, merging the localiza-760

tion strengths of ObjDet with the simpler segmentation761

pipeline of SegClas. For example, a two-stage strategy762

might first label coarse segments to identify candidate763

fish presence and then apply a lighter object detector for764

precise bounding-box proposals within segments flagged765

as “active.”766

Another promising direction is adaptive thresholding767

or region-specific threshold tuning based on local acous-768

tic conditions. For example, by incorporating environ-769

mental metadata (e.g., tide levels, salinity, known diur-770

nal cycles) in deep learning frameworks, thresholds might771

be dynamically adjusted to accommodate shifting noise772

floors and species-specific call patterns. Additionaly, in-773

tegrating domain adaptation techniques could further im-774

prove performance in unstudied or evolving underwater775

environments, such as those affected by climate-driven776

habitat shifts.777

D. Conclusion778

This study highlights the potential of advanced deep779

learning methods in tackling complex underwater sound-780

scapes for the assessments of soniferous fish. By compar-781

ing a segmentation-based CNN–LSTM framework Seg-782

Clas with a YOLO-based object detection model Ob-783

jDet, we reveal tangible trade-offs between accuracy, la-784

beling cost, computational overhead, and interpretabil-785

ity. From a bioacoustic perspective, both methods have786

demonstrated efficacy in isolating fish vocalizations amid787

potentially challenging real conditions and overlapping788

calls, thus providing a non-intrusive approach to moni-789

tor critical life-history events and habitat usage.790

SegClas proves advantageous for broad, long-term791

surveys where minimal annotation and rapid inference792

are paramount. ObjDet offers finer-grained call local-793

ization and improved recognition in complex conditions,794

albeit at the expense of extensive bounding-box label-795

ing and higher inference times. Ultimately, choosing be-796

tween these approaches depends on study objectives—797

whether the emphasis is on precise call-by-call analyses798

or on large-scale continuous monitoring.799

Continued refinement of these systems, along with800

adaptive thresholding and hybrid modeling strategies,801

will further mitigate misclassifications and expand their802

suitability in diverse ecological contexts. As passive803

acoustic monitoring becomes more integrated into ecosys-804

tem management, these deep learning frameworks have805

the potential to provide real-time insights. By process-806

ing and transmitting data from field stations in real time,807

these systems could facilitate early detection of ecolog-808

ical threats, supporting the protection and sustainable809

management of marine environments.810
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