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RISHIRAJ ADHIKARY, IIT Gandhinagar, Gandhinagar, India
MAITE SADEH, Cornell University, NY, United States
NIPUN BATRA, IIT Gandhinagar, Gandhinagar, India
MAYANK GOEL, Carnegie Mellon University, PA, United States

Smartphones and smartwatches have contributed significantly to fitness monitoring by providing real-time statistics, thanks
to accurate tracking of physiological indices such as heart rate. However, the estimation of calories burned during exercise is
inaccurate and cannot be used for medical diagnosis. In this work, we present JoulesEye, a smartphone thermal camera-based
system that can accurately estimate calorie burn by monitoring respiration rate. We evaluated JoulesEye on 54 participants
who performed high intensity cycling and running. The mean absolute percentage error (MAPE) of JoulesEye was 5.8%, which
is significantly better than the MAPE of 37.6% observed with commercial smartwatch-based methods that only use heart rate.
Finally, we show that an ultra-low-resolution thermal camera that is small enough to fit inside a watch or other wearables is
sufficient for accurate calorie burn estimation. These results suggest that JoulesEye is a promising new method for accurate
and reliable calorie burn estimation.
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1 INTRODUCTION
Smartphones and watches come with physiological sensors to allow users to measure their health. For example,
heart rate sensors on a watch can be used for real-time, non-invasive monitoring of cardiovascular conditions.
Researchers have also used different smartphone sensors to screen for lung diseases [42], jaundice [19, 49],
traumatic brain injuries [50], and other conditions. However, smartphones and wrist wearables are not primarily
designed for health sensing [51]. This makes them susceptible to inaccurate health diagnoses. Many sensors and
functionalities on phones and watches that are marketed for their health benefits are often very inaccurate [69].
One such functionality is energy expenditure (EE). Several researchers have demonstrated that EE estimation by
wearables can be wrong by over 40% [9, 21, 25, 59]. The study presented in this paper also corroborates these
findings. Despite the development of new sensors every year, accurate energy expenditure measurement has
proven elusive. Accurate devices are often bulky and require masks, and portable sensors are inaccurate. Thus,
we set out to identify the sensor that promises to be practical and ubiquitous enough that it could be added to a
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Fig. 1. JoulesEye estimates Energy Expenditure (EE) from respiration rate. In a) the participant is riding a cycle with thermal
camera and phone fixed on the handrail. b) Shows a frame of the thermal video. c) Shows the respiration rate detection
pipeline during motion combined with deep learning architecture to predict energy expenditure.

consumer device and immediately unlock accurate energy expenditure.

We present JoulesEye, it uses thermal imaging to measure respiration to accurately estimate energy expenditure
(EE) (Figure 1). EE is defined as the calories burned in a minute (kcal/min) and is one of the more frequently
examined physiological outputs [69]. An accurate monitoring of EE is critical given the increasing prevalence of
obesity (More than 1 billion people worldwide are obese [58]). A reason for inaccuracy of EE measurement on
wearables is the sole reliance on heart rate data [51].
We rely on the fact that EE depends on a multitude of factors. One such factor that is also related to respiration
rate is the body composition. Body composition is defined as the proportion of fat, bone, water, and muscle in
the human body. Two people with the same body weight could have very different body compositions if one
has a higher amount of muscle mass and a lower amount of body fat compared to the other. Medical [43, 44, 72]
and physical assessment studies [55, 56] have shown that respiration rate helps explains the change in body
composition which consequently explain the change in EE. Medical grade method in estimating EE includes
Double Water Test (DWT) [33], direct calorimetry and indirect calorimetry. But these methods involve bulky
installation, medical supervision and participant confinement for over 24 hours [33]. The gold standard indirect
calorimetry method of estimating EE requires monitoring of heart rate and the concentration of oxygen (O2) and
carbon-dioxide (CO2) in breath.

We used a thermal camera attachment for phones to accurately estimate EE (Figure 1). Breathing causes change
in temperature in the nostrils which results in variations in pixel intensity. We used classical region tracking
approach like Channel and Spatial Reliability Filter [46] to retrieve the pixel intensity in the nostrils. The intensity
information over time gives us the proxy of the breathing signal. We also used temperature and heart rate data
to improve the results. To extract temperature, we monitored multiple points on the forehead. The forehead
is an area of bony prominence where the probability of observing the change in temperature due to workout
is high [34]. While prior work has estimated respiration rate using thermal images [4, 16], experiments have
not been performed when the participants move exaggeratedly while exercising. Motion is also a challenge for
wireless signals-based respiration monitoring as removing motion artifacts has been a longstanding challenge. Our
algorithms work even when the user is cycling or running vigorously. The sensed respiration rate, temperature
and heart rate information from thermal data are fed into a deep learning model to estimate energy expenditure.

To evaluate our approach, we recruited 54 participants including 24 female participants who cycled and ran for
15 minutes. Our system has a Mean Absolute Percentage Error (MAPE) of 5.8% when compared with a gold
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Fig. 2. a) We evaluated JoulesEye using low-resolution thermal camera (MLX90640). a) and b) demonstrates our vision that
integrating thermal camera to smartwatch can unlock health applications. c) shows the low resolution video, where the
square covers the nose and is the region of interest from where respiration signal will be extracted. The region of interest is
identified using the nostril landmarks from the RGB camera as shown in d). The idea is that, a user after vigorous running
or exercising can record her respiration rate for a instantaneous energy expenditure estimate. This instantaneous value in
combination with heart rate will be a more accurate estimate of energy expenditure. In Section 6.6 and Section 6.5 we discuss
the current challenges of using a low resolution thermal camera based smartwatch.

standard indirect calorimeter. Given that high-resolution thermal cameras (160×120 visual resolution) are still
relatively expensive, we performed an experiment to evaluate if respiration signal could be extracted using a
lower resolution thermal video. We found that, our approach for estimating respiration rate works when the
resolution is reduced to 32×24 pixels. We envision that low-cost, low-resolution thermal camera costing $20 USD
can be easily added to modern phone’s camera cluster at the top of the screen or on a watch like shown in Figure 2
and immediately enable accurate measurement of EE.

Our work makes the following contributions:

• We created a system that can sense respiration rate and temperature from thermal video during motion
and use this information to accurately estimate EE.

• We evaluate our approach on 54 participants including 24 female participants who performed cycling and
running with indirect calorimetry as the ground truth. We demonstrate that respiration rate is a more
accurate predictor of energy expenditure than energy expenditure calculated just using heart rate data
obtained from an Apple Watch.

• We perform sensitivity analysis to show that the respiration rate estimation does not lose its accuracy
when we reduce the resolution of the thermal video. Such an analysis is a step towards using ubiquitous
low-resolution thermal cameras to extract energy expenditure.

• The data and code for reproducibility will be made available in the GitHub repository.
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2 BACKGROUND ON CALORIE ESTIMATION
Estimating a person’s total energy expenditure (TEE) is critical to monitor progress towards health goals and
help in preventing diseases such as diabetes, cardiovascular disease and even cancer. Any bodily movement
produced by skeletal muscles results in energy expenditure [15]. We can divide total energy expenditure into
three components, a) Resting Energy Expenditure (REE), b) Diet-Induced Energy Expenditure (DEE), and c)
Activity-Induced Energy Expenditure (EE). REE is the energy required for growth, maintenance and normal
function of the body. Significant factors that contribute to individual variation in REE include age, gender, body
size, body composition, ethnicity, physical fitness level, hormonal status and various genetic and environmental
influences [33]. Diet-Induced Energy Expenditure (DEE) is the energy required for food digestion, absorption,
transport and metabolism, storage of nutrients, and elimination of wastes. It represents an increase in energy
expenditure above the REE, which can be measured for several hours after a meal. EE is the most variable among
the components of TEE. In healthy young adults, the increase in EE is a function of the training, physical activity
and overall fitness.

Table 1. There is a trade-off between accuracy and convenience of existing energy expenditure methods. Methods like
DLW are very accurate but redundant. Energy Expenditure from heart rate is convenient to retrieve (for example, using
smartwatches), but those estimates of energy expenditure are error prone when different activities are involved [51].

Methods Limitations

Double Labeled Water Test (DLW) Requires at least 3 clinical visits in a 24-hour period.

Direct Calorimetry Requires participant confinement for at least 24 hours.

Indirect Calorimetry Costly device. Requires instrumenting the user with mask.

Accelerometry Does not consider human physiology which leads to
error in energy estimation.

Heart Rate Error prone with activities of rapid intensity changes.

2.1 Measurement Methods of Energy Expenditure
There are several popular approaches to measuring energy expenditure during a physical activity session. Some
approaches are more invasive and accurate. Typically, as the invasiveness reduces, the accuracy also reduces.
Table 1 shows various methods used to measure TEE.

2.1.1 Double Labeled Water Test. The Double Labeled Water (DLW) test is a chemical-based method that is
widely recognized as the gold standard for the measurement of TEE [61]. DLW test requires at least three visits
to a clinic on a single day for urine sample collection at different intervals. Although the procedure itself is
non-invasive, it is still tedious and time-consuming for the users to frequently measure their energy expenditure
using this method.

2.1.2 Direct Calorimetry. Direct Calorimetry measures the rate of heat loss by the subject using a calorimeter1.
The subject is placed in an insulated air chamber to ensure that no heat leaks through the walls. The heat
generated by the body due to metabolism changes the temperature of the space, which is then measured, usually
by changes in the temperature of water flowing through the walls. This method requires subject confinement for

1Example of direct calorimeter: https://www.directindustry.com/prod/ineltec-france/product-123381-1399577.html
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over 24 hours and is not ideal for measuring Active Energy Expenditure (EE) as gym equipment cannot be used
in a direct calorimetry chamber because the heat from gym equipment can pollute the recorded data [52].

2.1.3 Indirect Calorimetry. Indirect calorimetry is a more practical alternative to the direct method. It relies on
the measurement of inspired and expired gas volume and the concentrations of O2 and CO2. Human energy
metabolism involves the production of energy from fuel combustion in the form of carbohydrates, protein, fat or
alcohol. In this process, oxygen is consumed, and carbon dioxide is produced. Indirect calorimetry is measured as
a proxy of heat production or loss by measuring oxygen consumption and/or carbon dioxide production [29].
Due to its accuracy and practicality, this paper uses indirect calorimetry as the reference approach to measure
energy expenditure while exercising.

2.1.4 Accelerometry. Inertial Measurement Units (IMU) can determine energy expenditure from body acceleration.
Predictive equations are often used to find a relationship between body motion and energy expenditure. However,
studies have shown that this approach has many limitations when translating accelerometer data to energy
expenditure, primarily when used across various activities [47]. Devices that rely solely on motion data to
estimate energy expenditure are unreliable because they do not consider a person’s physiology such as heart and
respiration rate.

2.1.5 Heart Rate. The physiological basis of using heart rate to measure energy expenditure is the estimation
of consumed oxygen during aerobic metabolism. The oxygen is delivered to the working muscles and organs
in blood and used to burn fat and carbohydrates to generate energy. As the body’s oxygen requirement in-
creases, so does the heart rate (HR) and stroke volume (SV), i.e. the volume of blood ejected from the heart to
the aorta in one heartbeat. The oxygen-rich blood leaves the heart via the aorta, and the oxygen-poor blood
returns to the heart via veins. It should be noted that oxygen in oxygen-rich blood is never consumed com-
pletely; thus, the blood in veins always contains some oxygen. For energy expenditure calculation, we need
to thus consider the net decrease in oxygen content between oxygen-rich (arterial) and oxygen-poor (venous)
blood. Oxygen consumption-based Energy Expenditure (with unit kcal/min) can be represented in one equation as:

𝐸𝐸 = 𝐻𝑅 × 𝑆𝑉 × 𝛿𝑎𝑣𝑂2 × 𝛾

.
The heart rate is measured in beats per minute (bpm), SV is measured in litres (l), 𝛿𝑎𝑣𝑂2 is the ratio of litres of oxy-
gen in the aorta to litres of oxygen in the vein or 𝑙𝑎

𝑙𝑣
. 𝛿 is the oxygen-to-energy coefficient which is ≈ 5𝑘𝑐𝑎𝑙/𝑙 [65].

SV and 𝛿𝑎𝑣𝑂2 are not constant. They vary according to various parameters such as body composition [18], exercise
intensity and duration.

Smartphones and Smartwatches commonly employ heart rate and accelerometry data as a surrogate for estimating
Energy Expenditure (EE). In Section 3.2, we delve into the related research concerning EE estimation using
consumer-grade devices.
In addition to heart rate data, respiration data helps explain change in EE because body composition and respira-
tory functions are correlated [43, 44, 72].

2.2 Link between Energy Expenditure and Respiration Rate:
Current energy expenditure estimation algorithms in consumer wearables do not consider individual variability,
which arises because of different body compositions and varying Resting Metabolic Rate (RMR) [69]. Respiration
rate can be considered a proxy measure of body composition since it is known that adiposity and respiratory
functions are correlated [43, 44, 72]. Respiration rate is thus a good marker of physical effort. Also, the brain’s

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 146. Publication date: December 2023.



146:6 • Adhikary et al.

motor cortex is a significant regulator of respiration rate [55, 57]. The same motor cortex is also the primary
regulator of aerobic capacity, i.e. energy expenditure [30, 55]. Our work uses a thermal camera to estimate
respiration rates. The respiration rate information is input into a deep learning model to calculate the Energy
Expenditure (EE).

3 RELATED WORK
JoulesEye utilizes respiration rate data from thermal cameras to predict Energy Expenditure (EE). This section
begins by exploring previous research on respiration sensing with consumer devices and wearables. We then
highlight why thermal cameras outperform other methods in capturing respiration rate, especially during
participant motion. Finally, we focus on earlier studies that have examined Energy Expenditure monitoring using
physiological signals.

3.1 Respiration Sensing In Ubiquitous Computing
Previous research extensively utilizes the widespread availability of Inertial Measurement Units (IMUs) to detect
respiration rate. IMUs have been integrated into in-ear headphones [66], glasses [32] and smartwatches [71].
However, the efficacy of detecting respiration rate using smartwatches is effective either at rest or under controlled
motion, not both, due to motion-induced artifacts [11]. Research has also explored respiration rate detection
through smartphones, necessitating chest strapping [6, 35]. Wireless methods employing radar signals bouncing
off the human body [79] prove beneficial for detecting diseases like sleep apnea but are hampered by human
motion. A comprehensive review by Ali et al. [3] covers various non-contact respiration rate detection methods,
though they encounter several challenges. Vision-based systems encounter signal quality issues due to user
motion, and radar systems suffer from noise due to reflections in environments with multiple objects. Now we
explain in detail the reasons for not employing chest belts, RGB cameras, or earables for respiration in Energy
Expenditure estimation for JoulesEye.

3.1.1 Respiration Sensing Using Chest Belt: Force sensor embedded in the chest belts is designed to detect chest
wall movements during respiration. However, existing literature [31] has highlighted a notable limitation in
using chest belt data during physical activities such as cycling, where the accuracy is compromised because the
oscillatory motion during cycling is at a similar frequency to the respiration rate. Furthermore, placing a sensor
on the chest is not ideal for sensing respiration because minute respiration movement can be overwhelmed by
the large torso movement [78]. Consistent with these findings, we also observed similar inaccuracies in chest belt
readings for multiple participants engaged in running or cycling. To illustrate this point, we present a comparative
example of respiration signals captured through both a thermal camera and a chest belt during motion, displayed
in Figure 3. The chest belt signal is noisy, and the associated chest belt software reports a respiration rate of 5.4
breaths per minute for a 30s segment. In contrast, the thermal camera data recorded during the same period
exhibits cleaner results, with a respiration rate of 22.2 breaths per minute, aligning closely with the manually
determined ground truth respiration rate of 20.0 breaths per minute, obtained through visual inspection of the
thermal video (explained in Section 4.5).

3.1.2 Respiration Sensing Using RGB Camera: In the past, RGB cameras have been used to sense respiration
rate [13, 63, 73, 75]. However, such methods were not evaluated for capturing respiration during vigorous motion
activities like cycling or running. Another fundamental principle behind extracting the respiration rate from RGB
videos lies in sensing subtle changes in skin color. One such technique is Eulerian Video Magnification (VM) [77].
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Fig. 3. In situations of vigorous motion, the chest belt signal demonstrates notably heightened noise levels compared to
the respiration signal derived from thermal data. While the chest belt software registers a respiration rate of 5.4 breaths
per minute, the simultaneous thermal data records a respiration rate of 22.2 breaths per minute—closely aligning with the
manually determined ground truth of 20.0 breaths per minute. The chest belt’s subpar respiration rate performance can be
attributed to the highlighted gray segment, where noise amplifies significantly in the chest belt signal, while the thermal
signal remains stable. Remarkably, this degradation aligns with the participant’s body readjustment on the cycling seat.
Further insights into thermal signal respiration extraction can be found in Section 4.5

VM can amplify the color intensity change in the skin induced by breathing. Our observations revealed that
during treadmill running, the cyclical human motion frequency aligns with the respiration rate frequency. Prior
work [31] reported a similar observation. During a person’s running motion on the treadmill, the external room
light falls on various parts of their face as they cycle. Unfortunately, this presents a challenge when using the
VM algorithm, as it inadvertently amplifies this external light due to its frequency similarity to the respiration
frequency range. Consequently, the skin’s color changes caused by respiration are subdued, leading to a failure
in accurately sensing respiration from RGB video during motion. In contrast, extracting respiration data from
thermal cameras does not require complex modeling, as the thermal imaging reveals the respiration pattern
in the nostrils due to radiative and convective heat transfer components [67] throughout the breathing cycle,
independent of external lighting conditions.

3.1.3 Respiration Sensing Using Earables: The adoption of earables for monitoring respiration rate has gained
considerable momentum. Kumar et al.[41] effectively utilized earables to detect respiration patterns post-motion
rather than within motion. However, JoulesEye aims to estimate respiration rates during motion to accurately
calculate energy expenditure (EE). A recent study[2] has explored a multimodal approach using earables, com-
bining audio and motion data to alleviate motion artifacts in various daily scenarios such as reclining, listening
to music, and sitting or standing. Notably, this investigation primarily focused on head movements typical of
routine activities. Conversely, during intense physical exercises, head movements exhibit distinctive patterns
unlike those observed during typical daily routines. While prior research [64] suggests excluding noisy samples
caused by head movements, this strategy might be impractical during high-intensity workouts. We contend
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that evaluating the effectiveness of multimodal techniques solely based on regular daily head motions might
inadequately represent their performance during rigorous physical activities.

3.2 Energy Expenditure Estimation
Prior research extensively explored the energy expenditure capabilities of consumer-grade wearables or wearable
activity trackers [69]. Existing approaches for estimating energy expenditure often involve detecting activity
using accelerometers, followed by applying predictive equations [5]. However, these methods face errors at two
levels: first in activity classification and second in the significant variability of predictive equations. Studies
have demonstrated the substantial variability of predictive equations utilizing accelerometers as inputs [47].
Well-known consumer smart wearables like Apple Watch and Fitbit estimate energy expenditure output based
on Photoplethysmography (PPG), but comparative studies [17] reveal notable accuracy differences across brands.
Recently, researchers [54] achieved accurate energy expenditure estimation using both Inertial Measurement
Unit (IMU) and electrocardiogram (ECG) data. However, the ECG sensor required multiple probes placed across
various torso areas. Other studies [40, 70] have explored energy expenditure estimation methods using IMU
sensors on different body parts, such as the thigh and shank. In contrast, Aoki et al. [7] employed lasers to
measure chest contraction as a proxy for ventilation threshold during stationary biking. While related, their study
did not delve into investigating the ventilation threshold-energy expenditure relationship, nor did it address how
chest occlusion from loose clothing might influence outcomes. Subsequent research by the same authors replaced
the laser system with a Microsoft Kinect sensor for mobility, but this approach proved susceptible to participant
movement [8]. Thermal videos have historically been used to measure energy expenditure [26, 38], leveraging
optical flow to track cycling, walking, and running motion (but not respiration sensing). However, this solution
applies mainly to non-contact energy expenditure monitoring within confined spaces where a single participant
walks or runs. Optical flow tracking encounters difficulties in scenarios with multiple participants, uncontrolled
movements, and occlusion.

Previous research has predominantly focused on singular types of exercise, potentially introducing bias to
algorithms designed for energy expenditure estimation. While thermal cameras have been explored for non-
contact energy expenditure estimation, these efforts have been confined to tracking privacy-preserving cycling
motion using optical flow. JoulesEye’s novel contribution lies in employing a thermal camera to detect respiration
rates, enabling energy expenditure estimation for participants engaged in both running and cycling exercises.
The respiration rate extraction algorithms we employ demonstrate robustness against motion induced by cycling
or running and are comparably resilient to occlusion in contrast to prior work. Addressing another challenge
in energy estimation research, our approach aligns with the recommendation of the Intelligent Health and
Well-Being Network (INTERLIVE) [9], a collaborative European initiative that aims to establish best-practice
recommendations for evaluating the validity of consumer wearables and smartphones in the realm of physical
activity assessment.

4 APPROACH
Our goal is to determine how many calories a person has burned while exercising by measuring the respiration
rate. The breathing or respiratory rate is detected as a result of the temperature fluctuations due to airflow in
the nasal. The physical phenomenon is based on the radiative and convective heat transfer component during
the breathing cycle, which results in a periodic increase and decrease of the temperature at the tissues around
the nasal cavity. These observable temperature fluctuations are quantifiable in a thermal video as pixel intensity
variations of the nostrils ROI [67]. As was explained in Section 3, the respiration rate is correlated with Energy
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Expenditure (EE). In this section, we first describe the setup of our system and then the algorithm for obtaining
the temperature and respiration rate.

4.1 Ground Truth Devices

Fig. 4. JoulesEye’s is composed of a thermal camera retrofitted in an iPhone as shown in a). JoulesEye can be used in a
smartwatch as shown in b). The camera in b) is a low resolution (32x24) thermal camera. c) and e) show the ground truth
data collection procedure with indirect calorimeter while running and biking. d shows a screen grab from the indirect
calorimeter recording the energy expenditure during an exercise session.

First, we discuss the components used for collected ground truth data followed by other components used in the
design of JoulesEye.

4.1.1 Indirect Calorimeter. We used an indirect calorimeter to collect the ground truth of energy expenditure.
The Fitmate [74] indirect calorimeter (Figure 4(c-e)) consists of the following main components.

• Oxygen Sensor: Measures the oxygen consumption and the carbon dioxide expulsion from the body. The
concentration of oxygen and carbon dioxide is directly proportional to the energy expenditure.

• Flow Sensor: Measures the volume of air breathed in and out by the user.
• Microprocessor Unit: Analyzes the data from the sensors and calculates the energy expenditure based on
proprietary algorithms.

• Display Screen: It is shown in Figure 4(d). It displays the results of the energy expenditure calculation,
including the number of calories burned, in real-time.

• Mouthpiece or Mask: Attaches to the face and connects to the calorimeter, allowing the measurement of
inhaled and exhaled air.
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The Fitmate Pro [74] indirect calorimeter is used to collect VO2 (volume of oxygen) data during sub-maximal
as well as maximal exercise by measuring the volume of oxygen consumed and the volume of carbon dioxide
produced. Submaximal exercise is performed at a level below the maximum capacity of an individual. During
physical assessment, only sub-maximal exercises should be performed by participants in the absence of a clinical
physician [23]. The volume of oxygen consumed during physical activity is proportional to the amount of
energy being expended. The unit of VO2 is expressed as ml/kg/min. We convert VO2 from ml/kg/min to calories
(kcal/min), by using a conversion factor of 5 kcal/L [37]. Therefore, kcal/min = (VO2 (ml/kg/min) x body weight
(kg) x 5 kcal/L) / 1000. Throughout this paper, we use kcal/min as the unit of energy expenditure since ml/kg/min
gives us a measure of the rate at which oxygen is consumed by the body during physical activity and not EE. The
sampling rate of energy expenditure data is 0.5 Hz.

4.1.2 Respiration Belt. The ground truth of respiration rate is available from the indirect calorimeter. We also
collect the respiration rate, using the Vernier GoDirect [22] respiration belt (Figure 4(e)). We collected res-
piration rate from two sources because it is impossible to use the calorimeter and JoulesEye simultaneously.
Thus, instead of comparing JoulesEye with the gold standard output of the calorimeter, we use the chest belt
as the reference measurement of respiration. The belt consists of a flexible, stretchable material that is worn
around the chest, and it contains a sensor that detects the pressure changes caused by breathing. It has a mea-
surement range of 0-100 breaths per minute with an error of ± 1 breath per minute. It has a sampling rate of 0.1 Hz.

4.2 JoulesEye System
JoulesEye consists of a thermal camera to record the respiration rate of a person. The thermal camera (Figure 4(a,
b)) is used to retrieve the estimated value of respiration rate, temperature and used to estimate the EE. We used a
FLIR One Pro [24] smartphone attachment thermal imaging camera. To take thermal videos, the device needs to
be attached to an iPhone and connected to the FLIR ONE mobile application. A user can select the video mode
and start recording. The thermal video will be recorded in real-time, showing temperature differences and heat
patterns in the scene. The camera has a sampling rate of 8.6 frames per second with a temperature range of -20°C
to 120°C. The combined unit of the smartphone and the thermal camera was securely mounted on the handgrip
of an ergometer or affixed near the display screen of a treadmill in order to capture thermal video data of the
face. We also developed a wristband prototype JoulesEye as shown in Figure 4(b). The details of the wristband
prototype are described later in Section 6.5

4.3 Data Collection
To evaluate and inform our approach, we created a dataset which consisted of the following data.

• Energy Expenditure (EE) data measured in ml/kg/min along with volume of exhaled air measured in l/min.
• Thermal video data collected at 8.6 frames per second using a thermal camera. Thermal data is used for
estimating respiration rate and temperature of the face.

• Reference respiration rate data collected using a respiration belt and an indirect calorimeter.
• Heart rate data measured in beats per minute collected via an Apple Watch as well as using a chest belt.
• RGB video data collected using iPhone 11 in parallel with thermal video data.
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Total participants (n) 54
Participants who performed cycling on ergometer 41
Participants who performed running on treadmill 13
Female (n, %) 24, (44.4%)
Age (in years) (mean, range) 28.4 (25-54)

Table 2. Demographic information for the participants

4.4 Study Design
All participants between 18 to 70 years of age without any prior heart ailment could become a participant in
the study. In total, 54 volunteers participated in an approximately 45 minutes study session (Table 2). The entry
survey consisted of a questionnaire where the participants self-declared their age, weight, sex, time of the last
meal and recent illnesses. Our data collection method followed the best practice validation protocol mandated by
the Network of Physical Activity Assessment (INTERLIVE) [9]. The participants were shown how to wear the
indirect calorimeter mask. All participants participated in two back-to-back data collection sessions.

4.4.1 Effect of Environmental Temperature. The environmental temperature affects only the temperature data
that we retrieved from the forehead (explained later in Section 4.6.1) and not the reparation. Before the start of
every data collection, we ensured that the effect of environmental temperature was minimised. We collected data
in an air-conditioned room which had a temperature of 76 degrees Fahrenheit. We ensure that the participant has
acclimatized to the room temperature before the data collection begins. The acclimatization can be confirmed by
observing the nose tip of the person in the thermal video. The nose tip is one of the most sensitive region to
external temperature [34]. During cold climate (data collection was held during winter months of December-
January), the blood vessel stretches due to decreased blood flow as a result of homeostatic mechanisms resulting
in decreased nose tip temperature compared to other regions of the face. Once the participant is indoors, the
nose temperature and the nearby skin temperature gradually attains uniformity and that is when we consider
the participant to have been acclimatized to the room temperature. Participant acclimatization is critical if we
plan to use the temperature data (beside respiration rate) as a predictor of energy expenditure.

The only thing required to construct a respiration signal is the change in temperature in the nasal cavity.
Irrespective of the environmental temperature, the temperature at the tissue around the nasal cavity will be
different due to homeostatic mechanisms of the human body [34]. This implies that under normal physiological
and environmental conditions, the change in temperature in the nasal cavity will always be visible in the thermal
video.
The first session did not involve the indirect calorimeter because the calorimeter’s mask occludes the nostril of
the user, making it impossible for the thermal camera to extract respiration rate. Therefore, in the first session,
we only collected thermal data without the indirect calorimeter to extract the respiration rate from the nostrils.
The reference respiration signal of the first session was from the respiration belt alone. In the second session, we
collected ground truth energy expenditure (EE) data from the indirect calorimeter and respiration data from the
belt as well as the indirect calorimeter.

4.4.2 Session 1: Data Collection Using JoulesEye. Participants cycled on a stationary bike or ran on a treadmill for
both the sessions. In the first session, the participant ran for three minutes at a high intensity (4-5 miles/h running
and 2.5-3 miles/h cycling). We limited the high intensity session to three minutes keeping the participant’s
comfort in mind. Figure 5(a) shows a frame of the face during this session. The following data are collected during
this session.
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Fig. 5. In a) the participant has not donned the indirect calorimeter mask and hence the region tracking algorithm is able to
keep track of the nostrils (nostril also shown in inset image). In b) the nostrils are covered by the mask making respiration
detection impossible. We call a) as the JoulesEye data collection. During a) we could not collect the indirect calorimeter data
in parallel as otherwise the nostrils would be occluded. Here, we use the respiration data from chest belt as the reference
values. Thus, we could quantitatively evaluate the performance of JoulesEye’s respiration rate pipeline with ground truth
respiration data from the belt. We later used the respiration rate from JoulesEye data to estimate energy expenditure

• Thermal video data of the upper body with the frame covering the face. This data is later processed to
extract respiration rate.

• Respiration rate from the chest belt.

4.4.3 Session 2: Data Collection Using Indirect Calorimeter. In this session, the participant donned the indirect
calorimeter mask along with chest belt and performed cycling or running for 15 minutes comprising of High
Intensity Interval Training (HIIT). We explain the details of HIIT in the next section (Section 4.4.4). The thermal
camera recorded the face of the person during this session as well. Figure 5(b) shows a thermal frame of this
session where the participant has donned the mask. Note that the nostrils are not visible and this thermal data
cannot be used to extract respiration rate. The following data are collected during this session.

• Thermal data with frame covering the upper body including the face. The nostrils are now occluded by the
mask.

• Respiration rate from the chest belt.
• Energy Expenditure, volume of exhaled air and respiration rate from the indirect calorimeter.

The respiration rate from the chest belt is a common modality between both the first and second sessions of
data collection. We first evaluated our approach to estimating energy expenditure from respiration rate data
from the indirect calorimeter. We next evaluated how of estimation of energy expenditure changes when we
use respiration belt data. This evaluation helped us quantify the error of estimating energy expenditure from
the belt’s data. From the data collected in the first session, we quantified the error of estimating respiration
rate via the thermal data in comparison to the chest belt. The idea is that if the respiration rate between all
three modalities (Indirect Calorimeter, Belt and Thermal Data are within an acceptable range, we can claim that
JoulesEye would be able to successfully estimate energy expenditure data from the respiration data alone.
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We demonstrated in Section 4.2, that the chest belt data is not always reliable, especially during vigorous human
motion. In those cases, we rely on our manual visual inspection of the thermal data for the ground truth. Section 4.5
details how respiration rate is extracted from the thermal data.

4.4.4 High Intensity Interval Training. In session two, the first 29 participants performed cycling at their own pace.
The resistance of the ergometer was constant for these participants. During data collection we visually inspected
the energy expenditure signal over time and realized that the energy expenditure gradually increases over time
for all the participants. Our model might end up being biased to such a trend. To ensure diverse data in our
dataset, we asked the next 25 participants to perform High Intensity Interval Training (HIIT) where we changed
the resistance of the ergometer between highest and lowest level every 3 minutes. This lead to variation in the
energy expenditure pattern and increases the diversity of EE data in our dataset. Participants, who participated
in the treadmill running activity performed HIIT. They ran at 5-6 miles per hour during high intensity and 2.5-3
miles per hour during low intensity.

4.5 Extracting Respiration Rate During Motion from Thermal Video
The respiratory rate is identified by monitoring temperature changes in the airways caused by the flow of air.
These noticeable temperature changes can be measured in a thermal video by observing variations in pixel
intensity in the region of interest (ROI) encompassing the nostrils [67]. Given a correctly identified ROI, at time 𝑡 ,
we computed the respiration signal, 𝐼𝑎𝑣𝑔 (𝑡) (respiration signal from infrared video) as

𝐼𝑎𝑣𝑔 (𝑡) =
1

𝑊𝐻

𝑊∑︁
0

𝐻∑︁
0
𝐼𝑅𝑂𝐼 (𝑥,𝑦, 𝑡)

where𝑊 and 𝐻 are the width and height of the ROI, and 𝐼𝑅𝑂𝐼 (𝑥,𝑦, 𝑡) is the pixel intensity at pixel 𝑥 , 𝑦 at time 𝑡 .
(𝑅𝑅), We used 10 seconds of this signal (𝐼𝑎𝑣𝑔 (𝑡)) to compute a single sample of respiration rate (𝑅𝑅), details of
which are in Section 5.

However, extracting physiological signals like respiration rate during physical activities, such as cycling and
running is challenging due to significant body movement. We collected data in an uncontrolled environment
where participants cycled and ran at a considerable pace (5-6 miles per hour), and their faces were recorded
using a thermal camera. Uncontrolled environments bring in situations where participants would often rub off
sweat using their hand (and occlude the camera) or momentarily move away from the frame of the camera. We
used Channel and Spatial Reliability Tracker (CSRT) [46] algorithm to track the region of interest by accounting
for such noises in the video. We found that the CSRT algorithm is better suited to track the region of interest
(nostrils) in thermal video as compared to other state of the art landmark detection algorithms like MediaPipe [45]
and OpenPose [14].

The CSRT algorithm uses both channel and spatial reliability information to track the target region. Channel
reliability handles low contrast in thermal images, and spatial reliability handles variations in temperature
and size of the target region. In terms of feature extraction, the algorithm extracts features from each color
channel of the image separately. These features include a fusion of intensity and gradient information, such
as Histogram of Oriented Gradients (HoG) and gray-scale intensity. To handle variations in the size and po-
sition of the target region, the algorithm also extracts spatial features like texture and shape from the image,
which generate a spatial map that represents the likelihood of the target region being at each location in the image.
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The CSRT is a region tracking algorithm which means that the region has to be identified manually before the
algorithm starts tracking it. As discussed before, we are interested in tracking the nostril region and we use
the RGB video data and classical landmark detection algorithm [45] to detect the nostrils in the initial frames
spanning 10s of the video. Results demonstrate that the CSRT algorithm effectively tracks the nostril region
throughout the exercise, even when some frames do not have the nostril visible due to occlusion. In Section 6.2.2
we discuss the effectiveness and limitations of the algorithm during occlusion. The algorithm maintains tracking
of the region as long as the nostril returns in subsequent frames. Overall, the use of the CSRT algorithm allowed
effective tracking of the nostril region during cycling and running activities, providing insights into physiological
changes during exercise. An example video showing the nostril tracking can be seen in this anonymized video.

4.6 Additional Data: Heart Rate and Temperature
We evaluated how temperature data and heart rate data can affect the energy expenditure estimation. We are
interested in heart rate because (described in Section 3), heart rate is one of the most common proxies for energy
expenditure and together with respiration rate, the estimations can improve. Given that that pixel intensity in the
thermal data represents an approximate face temperature change during exercise, we can use this information
as well to see the change in energy expenditure. The heart rate data collected via an Apple smart watch and
the individual pixel intensity data collected from the thermal video was available for the second session. The
following subsection details the approach on extracting temperature and heart rate.

4.6.1 Extracting Temperature: Our pilot experiments showed that temperature change occurs in the region of
face with bony prominence like forehead, jawline and nose tip when a person is cycling an ergometer or running
on the treadmill. It is known that physical activity increases the metabolic rate and generates heat in the body.
This increased heat is transmitted through the blood vessels and nerves in the bony regions, leading to an increase
in skin temperature in these regions [12]. We extracted temperature information from the forehead. We used the
same region tracking algorithm with identical approach as described in Section 4.5, the only difference is that,
this time, we track the forehead instead of the nostrils. We take the average intensity of the region of interest as a
single sample or temperature value of a frame. Multiple frames across time give a 1D temperature vector.

4.6.2 Heart Rate: To make a fair comparison of the energy expenditure (EE) estimates produced by our approach,
it was important to compare it with the currently accepted EE estimates produced by smart watches. The heart
rate data from a Apple Watch was collected continuously during cycling and running, providing a continuous
measurement of the individual’s heart rate. This heart rate data was used as an additional optional input to our
approach of estimate energy expenditure in combination with other physiological signals such as respiration
rate and temperature. We also used the energy expenditure data from the Apple Watch as the reference for
comparison with the energy expenditure estimates produced by our approach. By using the energy expenditure
data from the Apple Watch as well as from our own model, it was possible to make a fair comparison of the
accuracy of the energy expenditure estimates with respect to the ground truth.

4.7 Modeling
Energy Expenditure (EE) is represented in cal/min, deduced from VO2 (Section 4.1.1). We aim to estimate Energy
Expenditure (EE) from Respiration Rate (RR). We do this in two phases.

• We will first estimate the volume of exhaled air (𝑣) from RR.
• Next, we will use the estimated volume information (𝑣) to estimate the measures the oxygen concentration
in a breath or VO2.
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The inspiration of using this two-phased approach comes from the indirect calorimeter, which measures the
oxygen concentration (O2) in a breath. O2 concentration in the inhaled air vary depending on factors like gas
exchange efficiency and body composition. By trying to model the relationship between the amount of O2
consumed and the volume of exhaled air (𝑣), we can account for efficiency and body composition. But, 𝑣 is
not readily available without the indirect calorimeter. Therefore, our first objective is to estimate 𝑣 from RR
data. Using RR alone to estimate VO2 can lead to inaccuracies because it does not take into account individual
differences in lung capacities and breathing patterns. We expect our model to learn these factors to estimate 𝑣
from RR alone. Our second model would then learn the transfer function and estimate unmeasured factors that
would determine VO2 from 𝑣 .

4.7.1 Predicting Volume from RR:. Both our models are an adaptation of the Temporal Convolution Network with
residuals (TCN) [10]. TCN leverages causal convolutions and dilation. Causal convolution enforces a unidirectional
information flow, while dilation allows to capture long-range dependencies of the input. In our work, the model
tries to learn a function 𝑓1 that best predicts the volume 𝑣𝑡 at time stamp 𝑡 such that

𝑣𝑡 = 𝑓1 (𝑣 (𝑡−𝑘 :𝑡−1) , 𝑅𝑅 (𝑡−𝑘 :𝑡 ) )

The model iterates over multiple samples of input and output to learn the function 𝑓1. During prediction,
subsequent samples (𝑣 (𝑡+1) , 𝑣 (𝑡+2) ...), are predicted autoregressively i.e.

𝑣 (𝑡+1) = 𝑓1 (𝑣 (𝑡−𝑘+1:𝑡 ) , 𝑅𝑅 (𝑡−𝑘+1:𝑡+1) )

where the predicted volume is used as an input to the next model which predicts VO2.

4.7.2 Predicting VO2 from 𝑣 : The approach to modeling VO2 from volume is similar to the previous modeling
approach where we use the TCN network, but this time we only use the volume information to predict VO2, i.e.

𝑣𝑜𝑡+𝑝 = 𝑓2 (𝑣𝑡 : 𝑣𝑡+𝑝−1)

where 𝑝 is the number of samples of volume. Therefore, to predict the first sample of VO2, we need in total 𝑘 + 𝑝

samples of respiration rate.

Fig. 6. We build a deep learning network similar to the Temporal Convolution Network (TCN) with residuals to estimate
volume as a function of respiration rate and volume i.e. 𝑣𝑡 = 𝑓1 (𝑣 (𝑡−𝑘 :𝑡−1) , 𝑅𝑅 (𝑡−𝑘 :𝑡 ) ). Additionally, we also evaluated
the performance of the model with additional covariates, namely heart rate (HR) and temperature (T) collected from the
forehead. On using HR and T, the equation becomes, 𝑣𝑡 = 𝑓1 (𝑣 (𝑡−𝑘 :𝑡−1) , 𝐻𝑅 (𝑡−𝑘 :𝑡 ) ,𝑇(𝑡−𝑘 :𝑡 ) , 𝑅𝑅 (𝑡−𝑘 :𝑡 ) ). The residual blocks
are composed of 1D dilated causal convolution (the first layer has no dilation), a ReLU activation and dropout [27]. A similar
convolution is used to later predict VO2 (calorie or energy expenditure) from Volume.
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Using Heart Rate (HR) and Temperature Data (T): During data collection (Section 4.3), we retrieved heart
rate data from both a chest belt and a smartwatch. Additionally, we obtained approximate temperature data
from thermal readings. To enhance our analysis, we incorporated Heart Rate (HR) data from the smartwatch and
forehead temperature (T) data as additional covariates. These supplementary variables enabled us to evaluate
the performance of estimating 𝑣 using different combinations of covariates, including HR alone, RR alone, a
combination of RR and HR, and a combination of RR, HR, and T. For example, with an input of RR , HR and T, the
equation to estimate 𝑣 becomes

𝑣𝑡 = 𝑓1 (𝑣 (𝑡−𝑘 :𝑡−1) , 𝐻𝑅 (𝑡−𝑘 :𝑡 ) ,𝑇(𝑡−𝑘 :𝑡 ) , 𝑅𝑅 (𝑡−𝑘 :𝑡 ) )

Figure 6 illustrates the corresponding TCN model for this combination of inputs. By modifying one (e.g., using
only T and RR or T and HR) or two covariates (using only RR), we adjusted the input dimension of the model,
necessitating corresponding adaptations to the kernel dimension while maintaining the dimensions of the tensors
within the residual network unchanged.

5 EVALUATION

5.1 Experimental Setting for Data Collection
In this section we describe the internal settings of the three systems involved in collecting data (thermal camera,
respiration belt and indirect calorimeter) and their synchronization. During data collection from the thermal
camera, the device did not share raw temperature values and we had to extract temperature from pixel brightness
from exported video. Thus, to counter the camera’s automatic gain control, we fixed its temperature range (via the
FLIR mobile application) to 20-40°C. Fixing the temperature range simply ensures that the mapping between pixel
intensity and temperature remains consistent for all the participants, i.e., 20°C corresponds to 0 pixel intensity
and 40°C corresponds to 255 pixel intensity for a grayscale video frame. This temperature range was found out
experimentally as it is unlikely that a healthy human body would exceed 104°F (or 40°C) [28]. The respiration belt
transmitted data via Bluetooth to a proprietary laptop application. The belt is also equipped with an on-device
LED to indicate proper fit. The participant demographic information (age, weight, sex, and height) was inputted
into the indirect calorimeter. Before each experiment, the indirect calorimeter underwent an internal calibration
to assess the functionality of it flowmeter and the galvanic sensors.

We synchronized the data from the indirect calorimeter and the respiration belt. Both these machines were
connected to a laptop during data collection which makes it possible to synchronize their timers. Similarly, the
thermal camera attached to an iPhone reports a starting timestamp. The indirect calorimeter is enabled after the
start of the thermal camera recording.

5.2 Experimental Setting for Extracting Respiration Rate and Temperature
We configured the belt to collect 10 samples of force data every second. In Section 4.5, we explained how CSRT
algorithm tracks the nostrils to extract respiration rate. The region of interest is first identified using 10𝑠 of initial
RGB video collected in parallel with thermal video. We used a classic landmark detection tool [45], to identify
the nostrils as the region of interest. Thereafter, no RGB data is used and the CSRT tracker successfully keeps a
track of the nostrils. The alignment between the RGB and the thermal data was achieved manually by adjusting
the coordinate of the region of interest. Although the FLIR thermal camera has an inbuilt RGB camera, but it
is redundant and we could not use this RGB data as raw data from the thermal camera is not readily available.
Hence, we relied on the phone’s onboard camera for the RGB video.
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The average pixel intensity of the region of interest over time gives us the respiration signal. The respiration
signal has a frame rate of 8.6 samples per second (same as thermal video’s fps). We extract one sample per frame.
During post processing of the respiration signal, we do a linear interpolation post Gaussian smoothing such that
we have 10 samples per second which matches with the sampling interval of the belt. Gaussian smoothing is
better than a simple moving average since it does a better job of cutting off the higher frequencies [20]. To match
the experimental settings of the respiration belt, we report the respiration rate every 3s from thermal data as
well. Finally, we have the respiration from all three systems at a 3s interval. Similar to generating the 1D signal
of respiration rate, we generate the 1D signal of the temperature. The only difference is that the region of interest
is the forehead instead of the nostrils.

5.3 Experimental Setting for Modeling
We used leave-one-participant-out cross-validation (LOOCV), where the data from all but the test participant is
used for training the model and evaluated on the test participant. LOOCV is preferred because it has less bias
compared to the validation set approach where we randomly split the dataset into train/test/validation or use
K-Fold cross validation [36]. We performed hyperparameter tuning on a random 40% of data from the training set
for each of the folds. During preprocessing, we concatenate all participants’ volume and RR data (additionally HR
and T) to form a single 1D signal for both volume and RR, respectively. The 1D signal from all the participants is
split into input and output chunks, where the input chunk represents data from the past, and the output chunk is
what we want to predict. During training, the model takes as input the past data for volume and RR, and the
current estimated RR to learn the current volume (See Figure 6). We ensured that all but the test participant forms
the data of these ‘chunks’. We performed hyperparameter tuning to find the optimal number of layers based on
‘input chunk’ size (𝑙 ), kernel size (𝑘), and dilation base (𝑏) of the dilated convolution layer. These values are 20, 5
and 2, respectively. In TCN the number of layers (𝑛) can be deduced using,

𝑛 = ⌈log𝑏 (
(𝑙 − 1) (𝑏 − 1)

(𝑘 − 1) )⌉

which results into 3 layers [48]. The number of kernel filters was experimentally determined to be 15. We used a
dropout of 0.03 with a learning rate of 0.005. We used early stopping to avoid overfitting and reduce training
time. The early stopping ensures that the training stops if the validation mean absolute percentage error does not
decrease by at least 0.05 for 5 consecutive epochs. The ‘input chunk’ size of 20 means that 20 values of respiration
rate is required to estimate the first value of volume (𝑘 = 20 in Section 4.7). After which, every respiration rate
sample returns a new sample of volume. 20 samples of respiration rate implies a time length of 60𝑠 . Therefore,
60s of respiration data is required for the first estimated sample of volume.

For the second TCN model that estimates VO2 (and consequently the Energy Expenditure or EE) from volume
of inhaled air data, the ‘input chunk’ of volume is 10 samples long (𝑝 = 10 in Section 4.7). This implies that to
predict the first sample of VO2, 𝑘 + 𝑝 = 20 + 10 samples are required in total which finally boils down to 90𝑠 of
data. Thus, 90𝑠 of input data is required for the first value of energy expenditure. Subsequent value of energy
expenditure follows every second. We discuss the impact of changing the size of input chunk in Section 6.6.
Additionally, we tested our model using different inputs such as respiration rate, heart rate from a consumer
watch, a combination of respiration rate and temperature, a combination of respiration rate and heart rate, and a
combination of respiration rate, heart rate, and temperature. We also tested our model on ground truth respiration
rate and heart rate. Before feeding the data into the neural network, we changed the VO2 data to cal/min data
using the method mentioned in Section 4.1.1.
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6 RESULTS AND DISCUSSION
In this section, we first discuss the performance of respiration detection from thermal video when compared to
ground truth from a respiration belt. Next, we discuss the performance of energy expenditure estimation from
respiration, heart rate, and temperature data.

6.1 Result on Estimating Respiration Rate
In this section, we will first discuss the result of our respiration rate estimation algorithm followed by the result
on estimated energy expenditure (EE). With the data from the first session we observed that the error between
respiration rate detection from thermal data when compared to respiration belt is 2.1% (Figure 7 (A)). Furthermore,
from the data collected from the second session we quantified that the error between respiration rate detection
from indirect calorimeter and respiration belt is 1.68%. In Section 3, we demonstrated that the belt tends to
overestimate respiration rate in cases when it is not snugly fit or in situations when the participant performs
sudden movement to readjust themselves especially when seated in the cycle. We meticulously annotated both
the chest belt and thermal data. The visibility of respiration in the thermal video provides us with a means to
rectify the chest belt data. Both these numbers (2.1% and 1.68%) are better compared to previous work [1] which
uses Electrocardiogram and Photoplethysmogram to calculate respiration rate. Since both, respiration rate and
energy expenditure are on different scales, using MAPE gives us a good idea of how changing one modality
impacts the other.

Fig. 7. The data obtained during the first session (A) serves the purpose of quantifying the discrepancy between the respiration
signal extracted from the thermal video and the signal obtained from the belt. This quantification holds significance for
subsequent insights, as depicted in Figure 8. The data collected during the second session (B) showcases the error in
estimating VO2 or EE when employing the respiration signal from an indirect calorimeter or a chest belt. Notably, it is
important to recall that using an indirect calorimeter obstructs the view of the nostril from the thermal camera.
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6.2 Result on Estimating Energy Expenditure
6.2.1 Using True and Reference Respiration Rate: Figure 7(B) shows the pipeline of estimating energy expenditure
or VO2 from ground truth respiration rate from the calorimeter and the reference respiration rate from the chest
belt. The first TCN model is used to estimate volume of exhaled air from respiration rate data. The estimated
volume of exhaled air is then used as an input to the second TCN model which estimates energy expenditure
or VO2. Figure 9 shows that the best result of 5% Mean Absolute Percentage Error (MAPE) was obtained when
ground truth respiration rate was input into the model. Using the belt’s respiration rate as an input gives us an
MAPE of 5.2%. To put these numbers into context, we compared the performance of using respiration rate as a
predictor versus heart rate and temperature. We also compared the result obtained from Apple Smart Watch. In
Figure 9, the following inputs are shown,

• True HR: This is the heart rate obtained from the indirect calorimeter chest band for heart rate.
• Estimated HR: This is the heart rate obtained using Apple Smartwatch.
• True RR: This is the respiration rate obtained from indirect calorimeter.
• Estimated RR: This is the RR generated by adding noise to the RR from the respiration belt. Recall that in
Session 2, we collected respiration belt data. We add noise to this data so that we can simulate belt’s data as
the respiration data coming from thermal video (Explained in subsequent paragraph).

• Estimated RR and HR: This means the estimated RR data and Apple Watch HR data.
• Estimated RR, HR and T: This means the estimated RR data, Apple Watch HR data and the temperature
data collected during session 2.

Figure 9 shows that the energy expenditure reported by Apple Watch has a MAPE of 37.5% across all participants
when compared to the energy estimate from indirect calorimeter. But, using the heart rate from the Apple watch
as an input to our TCN model gives an energy expenditure estimate with a MAPE of 12%. We believe this is
because of two reasons. First, the algorithm that Apple Watch uses to estimate energy expenditure might be
more generalised across exercises which are both anaerobic and aerobic and second, there might be some kind of
exercise for which the energy expenditure algorithm of the watch expects hand movement to occur. For example,
during cycling, there is no hand movement as participants usually rest their hands on the handrail.

Fig. 8. JoulesEye EE estimation pipeline: The calorimeter’s mask obstructs direct thermal-based respiration retrieval by
blocking the camera’s view of the nostrils. To replicate thermal-based respiration, we added noise to the belt-derived
respiration signal, introducing a 2.1% error to simulate the difference between the reference respiration from the belt and the
thermal video. The resulting noisy respiration rate (RR) signal was then input into the first TCN model for volume estimation.
The estimated volume was subsequently passed to the second TCN model to predict VO2 or energy expenditure.
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6.2.2 Using Proxy Respiration Rate: We described in Section 4.3, why respiration rate obtained from thermal
data is not available with ground truth of energy expenditure. But, from comparison of Session 1 data (Figure 7),
we know that the error between respiration rate obtained from thermal data and belt is 2.1%. Thus, we can use
the respiration data of belt from Session 2 (Figure 7) and add noise to it so that we generate new respiration
data which has an error of 2.1%. We use this respiration data to predict energy expenditure as shown in Figure 8.
Mathematically,

NoisyRR𝑖 = BeltRR𝑖 + 𝜖𝑖

𝜖𝑖 ∼ N(` = 0.44, 𝜎 = 0.35)

where NoisyRR is the noisy respiration data and BeltRR is the respiration rate from the belt. We refer to this
noisy respiration data as a proxy to the estimated respiration data. The choice of mean and standard deviation
was such that so that the error between the noisy respiration rate and the ground truth respiration rate is 2.1%. A
quantile-quantile probability plot confirmed that the respiration data from the belt follows a normal distribution
and hence we choose the generate the noise from a normal distribution.

We compare the estimates from Apple Watch heart rate data and the estimates from estimated respiration rate in
Figure 10. For cycling activity, the energy expenditure estimated from the heart rate data are relatively inaccurate
as apparent from the noisy data in the lower portion of Figure 10(a). The same trend is not observed in Figure 10(b)
when respiration rate is used as a predictor. Figure 9 also shows that adding Apple Heart Rate data to estimated
respiration rate data can improve the performance from 5.8% to 5.5%. Adding temperature information improves
the model further. But none of these improvements are as good as using the gold standard respiration rate from
indirect calorimeter which has a MAPE of 5%. It is important to note that, for each participant, we changed the
demographic information before data collection in the Apple Health app.

According to existing literature [53, 62], consumer grade health trackers should not exceed a 10.79% (MAPE)
from the gold standard in order to be considered accurate. A previous evaluation of five commercially available
wrist-worn devices tested with regard to their validity of EE compared with indirect calorimetry showed an MAPE
> 10% [62]. Some other studies [68] put the MAPE at >20%. Our analysis has shown that heart rate from wrist
worn wearable will not accurately predict EE (12.%) but combining heart rate with respiration and temperature
data will improve the MAPE to 5.2%.

6.3 Effect of Occlusion
In Section 4.5, we asserted that the CSRT algorithm is capable of tolerating occlusion. To validate this claim,
we conducted an evaluation to quantify the impact of occlusion on the accuracy of respiration rate estimation.
Figure 11 (a) demonstrates that when three or more frames are consecutively occluded, the respiration rate
estimation exhibits a high Mean Absolute Error of 20.1, while one or two frame occlusions result in a significantly
lower error rate. The occurrence of prolonged occlusion, lasting three or more frames, leads to the loss of nostril
tracking by the Region of Interest (ROI) tracker, causing alterations in the mean intensity signal, as illustrated in
Figure 11 (b). As a consequence, this deviation in the intensity signal adversely affects the accuracy of respiration
estimation. However, in such instances, we activate the RGB camera to re-establish the tracking of nostrils
through landmark detection. By continuously tracking the nostril with the RGB camera, we can successfully
retrieve the correct mean intensity signal, as shown in Figure 11 (c).
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Fig. 9. True HR is the heart rate obtained from the indirect calorimeter chest band for heart rate. Estimated HRis the heart
rate obtained using Apple Smartwatch. True RR is the respiration rate obtained from indirect calorimeter. Estimated RR is
the JoulesEye’s respiration rate. Estimated RR and HR is the estimated RR data and Apple Watch HR data and lastly the
Estimated RR, HR and T is the estimated RR data, Apple Watch HR data and the temperature data collected during session 2
of data collection. Using respiration rate and temperature from JoulesEye and heart rate from smartwatch gives us MAPE of
5.2% which is much better compared to estimates from heart rate data alone (MAPE 10.2%).
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Fig. 10. In a), the error is higher for cycling activity, especially at lower energy expenditure rates. At low intensity cycling
(2-2.5 Miles per hour), the Apple watch overestimates the heart rate. Although, the same is not true during running activity.
In b), respiration rate does better in estimating both kind of exercise comprising high and low intensity exercise. Note that for
visual clarity we have plotted a subset of samples from each participant (though the same trends exist on the whole dataset).

The data presented in Figure 11 (a) is the result of manual analysis conducted on a total of 2610 frames obtained
from five participants. The occurrence of occlusion is predominantly observed when participants use their hands
to rub their faces. As an example, Figure 11 (b) and (c) display a sequence of 526 frames from one participant.
At the 250th frame (22nd second), the ROI tracker loses track of the nostril, prompting the manual activation

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 146. Publication date: December 2023.



146:22 • Adhikary et al.

0 1 2 3

Number of consecutive frames occluded
(a)

0

10

20
M

ea
n

A
b
so

lu
te

E
rr

o
r

0 20 40

Time (s)
(b)

100

125

150

175

M
ea

n
in

te
n
si

ty
fr

o
m

th
er

m
a
l

v
id

eo
(W

it
h
o
u
t

R
G

B
C

o
rr

ec
ti

o
n
)

Tracking lost due to occlusion

0 20 40

Time (s)
(c)

140

160

180

M
ea

n
in

te
n
si

ty
fr

o
m

th
er

m
a
l

v
id

eo
(R

G
B

C
o
rr

ec
te

d
)

Fig. 11. The impact of occlusion: Analysis reveals that occlusion in three or more consecutive frames leads to a significant
error in respiration estimation as shown in (a). Most of the occlusion occurs for 1 or 2 frame only, not leading to any significant
error. Nostril tracking Loss: Prolonged occlusion disrupts the tracking of the nostril, resulting in the loss of the respiration
signal as shown in (b). Leveraging RGB camera for nostril reinstatement: To address the issue of vigorous movement leading
to nostril tracking loss, we introduce an RGB camera placed alongside the thermal camera. The RGB camera performs
landmark detection on the nostril, reestablishing the nostril (ROI) tracker and preventing the loss of respiration signal as
shown in (c).

of the RGB video at the 251st frame to detect the nostril. Once the nostril is successfully detected in the RGB
footage, the ROI of the nostril is reinstated, ensuring the continuity of the tracking process. Further details on
the matching process between RGB and thermal videos are explained in Section 4.5.
6.4 Discussion
Energy Expenditure (EE), or calories burned, is a complex process that varies among individuals due to a multitude
of factors such as enzyme levels, gut bacteria, and body composition. Indirect calorimeters, considered the gold
standard, measure heart rate and the concentration of inhaled oxygen and exhaled carbon dioxide to accurately
estimate EE. On the other hand, consumer wearables worn on the wrist rely solely on heart rate for EE estimation.
In our system, we enhance EE estimation by incorporating respiration rate and temperature alongside heart rate,
resulting in improved performance, though not as precise as an indirect calorimeter. This advancement in EE
estimation, particularly relevant in sports medicine, offers notable benefits. For instance, the International Society
of Sports Nutrition [39] (ISSN) suggests that athletes engaging in intense training for 2–6 hours a day, 5–6 days a
week, could burn over 1200 calories per hour during exercise. To maintain body weight, a corresponding calorie
intake is necessary. An error exceeding 30% (as observed for smartwatches in Section 6.2) in EE estimation could
lead to incorrect caloric consumption, resulting in suboptimal performance. As evident from Section 6.2, the
inclusion of respiration rate in calorie estimation models substantially reduces error, facilitating more accurate
post-exercise body weight management.

We will now provide an explanation of why respiration rate could be a better predictor for EE compared to
HR with respect to our analysis and previous literature. According to literature [43, 44, 72], respiration rate
information helps in explaining body composition or adiposity which is an important determiner for EE. Body
composition plays a significant role in determining energy expenditure because each type of tissue in the body
requires a different amount of energy to maintain. Muscle tissue is more metabolically active than fat tissue,
meaning it requires more energy to sustain. This means that individuals with a higher proportion of muscle
tissue will have a higher baseline energy expenditure compared to those with a higher proportion of fat tissue.
People with a higher proportion of muscle tissue are generally able to perform physical activity more easily
and for longer periods of time, leading to higher energy expenditure. On the other hand, individuals with a
higher proportion of fat tissue may find physical activity more challenging and therefore burn fewer calories [76].
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Adiposity, or the state of being overweight or obese, is closely related to body composition. Adipose tissue, or
body fat, is a major component of body composition and contributes significantly to body weight. An increase
in body fat is associated with an increase in respiration rate, as the body has to work harder to maintain its
metabolic processes [44].

Table 3. We found that the Energy Expenditure estimates by Apple Watch is higher for people with high Body Mass Index
(BMI), whereas it is relatively better for people with normal BMI.

All Participants Participants With
Normal BMI

Participants With
Overweight BMI

Error (Apple Watch) 37.6% 29.7% 51.8%
Error (JoulesEye) with RR 5.8% 5.2% 6.9%

To analyse if body composition affects the energy expenditure estimates, we split our data into people with
normal and overweight Body Mass Index (BMI). Figure 3 shows the MAPE of energy expenditure from Apple
Watch and the MAPE of energy expenditure estimates from respiration rate. It can be observed that the Apple
Watch does a poorer job on estimating the correct energy expenditure for people who are overweight (MAPE:
51.8%) as compared to people who have normal BMI. Although, even respiration rate predicts energy expen-
diture better for people with normal BMI, but the MAPE is much lower, which might explain the theoretical
understanding that respiration rate data helps in explaining the adiposity or the state of being overweight or obese.
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Fig. 12. Although, both heart rate and respiration rate are correlated with EE, using respiration rate helps explain the high
frequency change in the EE signal.

Another reason why respiration rate explains the change in EE can be deduced from Figure 12 which shows that
the heart rate, respiration rate and EE are well correlated, however the correlation between heart rate and energy
expenditure is lower (Pearson Correlation = 0.78) compared to respiration rate and EE (0.93). Figure 12 suggests
that high frequency information in the EE signal are captured by the respiration rate and not the heart rate. Heart
rate signal is smoother resulting where no frequent changes are observed unlike in respiration rate and EE signal.

6.5 Result with Reduced Video Resolution from JoulesEye Smartwatch
As explained previously in Section 4.3, the FLIR Thermal camera needs to be retrofitted with an iPhone and its
video recordings are saved in 1440x1080 pixel resolution without access to any raw data. But, for JoulesEye to be
practical, we envision the smartwatch might come with a low resolution thermal camera. The primary advantage
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Fig. 13. We envision in the future, smartwatches can come installed with thermal cameras to accurately estimate EE. In a)
we show what our future smartwatches can look like. In (b) we show our first prototype wristband thermal camera which is
composed of a low resolution thermal camera and a RGB camera.

of using a low resolution thermal camera is reduced power and privacy concerns. As shown in Figure 13-b), we
designed a 32x24 pixel resolution MLX90640 based thermal imaging system. It also has a RGB camera beside it.
The RGB camera helps initially locate the nostrils and thereafter, the CSRT algorithm keepa track of the nostril as
previously shown in Figure 2 in Section 1. We evaluated our low-resolution thermal system for respiration rate
detection on 5 participants. These participants were asked to run on a treadmill at 4 miles per hour for a minute
with the constraint that they look into the JoulesEye smartwatch thermal camera by extending their hand, akin
to looking into a smartwatch. When compared to ground truth respiration rate data collected via the belt, we
observed that the MAPE of estimating respiration rate is 8.1%. This high error arose because we were not able to
achieve a high frame rate for the thermal camera. The current frame rate is 3 frames per second which is fine for
slow or no movements but it causes a dithering effect when there is too much movement from the participant.
We repeated the procedure as described in Section 6.2 of adding noise to respiration belt data so that the new
data has an error of 8.1%. Using this data we got an energy expenditure estimate of 15.4%. While 15.4% is higher
compared to the estimates from the watch’s heart rate data alone (using our algorithms and not Apple Watch)
which is 12% (Figure 9), combining this respiration rate data with heart rate data reduces the error to 10.1%. This
shows that even though the frame rate of the wristband prototype is low, leveraging thermal data and heart rate
data from smartwatch can estimate energy expenditure accurately when compared to heart rate data alone. The
results are summarised in Figure 4.

We believe that a participant performing running or cycling need not always look into the smartwatch camera,
but can periodically look into it so that instantaneous energy expenditure value can be calculated which in
combination with heart rate data can improve the accuracy of energy expenditure as compared to heart rate
alone. However, the minimum time required (which is 90𝑠 as described in Section 5.3) for estimating the initial
value of energy expenditure poses a challenge. The next section, provides more insights into the time resolution
of estimating energy expenditure.

6.6 Impact of Changing Time Resolution
Our result of JoulesEye shown in Figure 9 is based on input data sampling interval of 90𝑠 , where 60𝑠 is required
to estimate the first sample of volume and further 30𝑠 more data is required to estimate the first sample of
VO2. Figure 14 shows how the percentage error changes when we gradually decrease the input chunk length
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Table 4. Estimation of EE using a low-resolution thermal camera in combination with heart rate data yields an error of 10.1%,
showcasing its superiority over using heart rate data alone. These results demonstrate that even with a very low-resolution
thermal camera, EE estimation can be enhanced. Addressing current challenges, such as dithering and time resolution
(outlined in Section 6.6), holds the potential to further improve the accuracy of the estimation.

Table 4.1: The error (MAPE) in RR estimation varies with
changes in thermal video resolution.

Resolution Error on
estimated RR

1080p thermal camera 2.1%
24p thermal camera 8.1%

Table 4.2: Reduced thermal video resolution leads to in-
creased error (MAPE) in EE estimation. However, the
incorporation of HR data significantly enhances the re-
sults, even for low-resolution thermal videos.

Input Data Error on
estimated EE

RR from 1080p thermal 5.4%
RR from 24p thermal 15.4%

RR from 1080p thermal and HR 5.3%
RR from 24p thermal and HR 10.1%
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Fig. 14. Using 60s of respiration rate data gives us the best performance on estimation energy expenditure. 30s of respiration
data is enough to predict energy expenditure with a better performance compared to heart rate alone.

of respiration rate estimation. We previously described about input chunk length in Section 5. We observe that
using 15𝑠 of respiration data is enough to predict energy expenditure with a better performance as compared to
heart rate alone. This implies that after exercising a user will have to look into the watch for 15𝑠 + 30𝑠 for her
energy expenditure to be predicted by the model. We believe that work needs to be done in order to reduce this
interval further towards making the system even more practical.

7 LIMITATIONS AND FUTURE WORK
We now discuss the limitations of our present work and plans for addressing them in the future.

• Smartphone/Smartwatch Integration: Our objective is to retrofit a smartphone/smartwatch with a low-
resolution thermal camera [60] in line with our discussion in Section 6.5. Although we prototyped JoulesEye,
engineering challenges to obtain higher frame rate remains an unsolved problem. Our initial result in
Section 6.5 is promising, but our system is not yet real time, meaning the video processing and deep learning
pipeline needs to be run after data recording.
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• Usability of Smartwatch Prototype: Although we developed a prototype smartwatch for JoulesEye, we did
not conduct any usability study with it. Currently, performing a usability study would not yield desired
results, as each participant would need to continuously look into the watch for at least 45 seconds (as
described in Section 6.6) to obtain any energy expenditure estimate. Such extended duration for glancing
at the watch is impractical. Further research is required to significantly reduce this time interval, allowing
a quick glance at the watch to provide accurate energy expenditure values.

• Uncertainty in Estimation: Our current methods for estimating energy expenditure give a point estimate.
In the future, we plan to incorporate uncertainty in our estimation. Incorporating such uncertainty will
be particularly important as various sensing modalities will be affected differently owing to differences
in external conditions. As an example, the algorithms for heart rate estimation will likely not suffer even
when the surroundings are dark, but the algorithms to estimate nostril position from RGB will suffer. Thus,
in the future, we plan to implement a principled uncertainty based approach, where uncertainties in the
different parts of the pipeline (estimating respiration rate, temperature; estimating energy expenditure
using machine learning model) are considered while estimating energy expenditure.

8 CONCLUSION
Measuring energy expenditure during exercise is an important measure of overall health. In this work, we
presented our system JoulesEye to accurately estimate energy expenditure during cycling and running. Our
system measured the respiration rate using a thermal camera during motion and then estimated the energy
expenditure. We found that our system is more accurate than smartwatch-based methods for estimating energy
expenditure. We developed a low-resolution thermal camera prototype of our system that can be retrofitted in
existing smartphones and watches and thus help scale measuring energy expenditure during exercise.
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