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ABSTRACT

Practical Privacy Preserving Ambient Sensing

We have entered a new age of computing where the computer is tied
not only to a person’s body but may also be present in their environment.
The ambient presence of sensors enables unprecedented opportunities to
build smart environments that adapt to user needs, tracks activities, en-
ables interactions and assists the user in their daily tasks. Even though
ambient sensing exists, its scale until recently was limited by the available
hardware and computing power. And even despite some recent advance-
ments in their capabilities, ambient sensing techniques generally tend to
be privacy intrusive.

In this dissertation, I identify key challenges of robust ambient sensing
i.e. the ability to trackusers andactivities via sensorspresent in theenviron-
ment. First, theremay bemultiple users present in the same environment.
The need to build reliable novel approaches that detectmultiple users and
activities from the same sensor stream and identify each user performing
those activities presents a unique technical challenge. Additionally, these
machine learning powered techniques require a large amount of training
data that posits another challenge of data collection and labeling. Lastly,
managing theprivacy expectations of all users in a shared environment is a
socio-technical challenge that influences the design of those approaches.

In my thesis, I focus on two ambient sensors: cameras and mmWave
radar. While mmWave radar is inherently a privacy-preserving sensor, the
cameras are regarded as highly intrusive. Thus, I first present a mixed-
methods approach tounderstand theprivacypreferences of users for cam-
erasbeingusedas sensors in a rangeof environments. Thisworkhighlights
how using privacy preserving techniques to sense activities and clearly
communicatinghow itworksmay instill trust in auser. Next, I discuss three
systems I built that tackle the aforementioned challenges of ambient sens-
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iv Abstract

ing.

1. The ability to sensemultiple activities: I showcase a camera-based ex-
ercise detection and tracking system that can sense different exercise
types and count the number of repetitions for multiple users at the
same time.

2. Theability to identify individual users in the sameenvironment: I present
ahybrid camera-imuapproach thatusesmotioncorrespondence from
both modalities to identify individual users in a scene.

3. The ability to collect and label data for new sensors: I discuss a novel
domainadaptationapproach that leverages existing labeled IMUdatasets
to train mmWave radar sensor for activity recognition.

I have also conducted appropriate evaluations in unconstrained and
semi-constrained environments to underscore the practicality of these ap-
proaches. Finally, I also outline how all systems tackle a different challenge
of ambient sensing and their impact on the privacy of the user.
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CHAPTER 1

INTRODUCTION

The famous British writer Arthur C. Clarke articulated three laws regarding
the future of technology. His third law [1] states,

”Any sufficiently advanced technology is indistinguishable frommagic.”

Andwhatmakes amagic trick successful is the seamlessnesswithwhich
it is performed. And as such, the last few decades have seen plethora of
research to advance technology to build that seamlessness into everyday
lives. From self-driving cars to smartphones, from CCTVs to miniature IoT
devices, sensors are ubiquitous. Apart from the newfound ubiquity, pow-
ered by state-of-the-art machine learning techniques, these sensors can
now transform raw sensor data into usable and intelligent inferences. It
makes sensor-laden devices more context-sensitive, adapt to the user’s
environment, opportunistically capture the scene, and decide what to do
with the captured information. To the unfamiliar, this passive computation
and sensing is in fact magic.
In my work, I focus on technologies that passively adapt to the user’s

environment and recognize and track their activities in a seamlessmanner.
There are two prominent philosophies that have guided prior work in this
domain. The first uses personal devices that a usermay have on their body
(mobile and wearable sensing), whereas the second uses a device placed
in the user’s environment (ambient sensing).
Here, I make the distinction of using ambient sensors to track singu-

lar activities (e.g., using a camera to monitor fall detection in elderly [2])
and tracking activities for multiple users together. The ability of a sensor
in the user’s environment to track singular activities has been extensively
explored in the past. It can be characterized as a building block towards
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2 Introduction

the next step in practical sensing at scale: tracking multiple activities at
the same time. This thesis focuses on solving some of these challenges for
ambient sensing to becomemore practical than it’s current state.
Before we dive deeper into the advantages and challenges of ambient

sensing, I present a brief overview of prior work in wearable and mobile
sensing. I outline its benefits and challenges. It provides a foothold to
better understand why ambient sensing has certain advantages over the
user-centric wearables approach. Finally, I outline some outstanding chal-
lenges of practical ambient sensing and howmy thesis contributes in solv-
ing them.

1.1 Mobile AndWearable Sensing

Context adaptable applications need to sense rich information with a high
fidelity. A common approach to do so is to use the sensors available in a
person’s own device. This approach has several benefits such as a one-
to-one mapping of the device to the user i.e., any technique built to use
the personal device for sensing operates under the assumption that all
the data is collected for the same primary user. Identification is never an
issue, which is in contrast with environmental approaches that need an
additional mechanism to determine ’who’ in addition to the ’what’. An-
other big advantage of personal devices is their portability. A smartphone
or a smartwatch is present with the user throughout the day, thusmoving
across different places (environments) throughout the day.
The advent of iPhone in 2007 led to a computing revolution, and within

a fewyears positioned the smartphone as theprimary personal device. The
wide array of sensors tightly encompassed in a handheld box allows us to
sense and recognize a range of activities. From detecting simple activities
such aswalking, sitting [3] or driving, tomore nuanced recognition such as
not only that aperson is in a vehicle, but also if they are thedriver or thepas-
senger [4]. They have also been used extensively in healthcare such as sim-
ple step counts, sleepmonitoring [5] or to detect Parkinson’s disease [6]. In
fact, smartphones are so pervasive that they have been used to sense ac-
tivities at the scale of a crowd tomonitor road and traffic conditions[7] and
air pollution [8]. Within a span of only few years, the smartphone and the
sensing capabilities have co-evolved rapidly.
However, smartphones arenot theonlypersonal devices. Recently there
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hasbeena surge in thepopularity ofwearabledevices suchas smartwatches
and heads-up displays. These on-body devices can be used to detect a
myriad of activities such as smart glasses to detect eating [9] or smart-
watches for hand-based activities such as typing or brushing teeth [10].
Wrist-worn devices have been particularly popular for healthcare sensing.
Historicallywearableshavebeenused to track stepcount andheart rate [11].
But these days, commercial devices dubbed as health and fitness acces-
sories such as Fitbit and the Apple watch are capable of track and collect
other kinds of wellness data such as sleep duration and quality. Beyond
that, researchers have even used wrist-worn wearables for tracking exer-
cises [12], capture stereotypedmovements in children with learning devel-
opmental disabilities [13], and tracking a user’s smoking habits [14]. Other
wearables such as heads up displays have been used as assistive devices
for people with Parkinson’s [15], and even to improve medical education
by providing a first-person view of surgical procedures for medical stu-
dents [16].

The mere fact that we have been able to leverage personal devices for
so many use-cases is astounding. There are numerous benefits, and no-
body can deny that personal devices are a powerful source to sense ac-
tivities. However, they also have certain limitations. The personal devices,
especially wearables are limited in their on-body position. It makes it chal-
lenging, and sometimes nearly impossible to sense different activitieswith
similar precision. For example, a wrist-worn device is less precise in recog-
nizing activities that do not include the arm that the device is worn on. The
restricted position, and the size of personal devices also limits its sensing
resolution. Admittedly, different devices are dedicated for different kinds
of activities, and excel at those. But even though smartphonesmaybeper-
vasive, wearables are nowhere near that common. The need for multiple
smart devices suited for different roles makes it a costly endeavor for the
end user. Even if cost was not an issue, do we really want to instrument
every part of the human body with sensors to overcome this challenge of
sensing resolution and limited sensing capabilities?

So, until amoreunifyingapproach is developed that uses a singledevice
to sense a wide array of activities- a user must choose between accurately
tracking only a small set of activities with a single device, or a personmust
carry multiple devices on their body to track more activities. This is a lim-
itation of this approach. It points towards a need for a solution that does
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not rely on the user and what device they may have, rather is ubiquitous
and blends into the environment. Luckily, recent advances in computing
such as cheaper and faster hardware, tools for improved computer vision
and machine learning have paved a path for practical ambient sensing.

1.2 Ambient Sensing

The challenges borne by mobile and wearable sensors point towards the
need for ambient sensing. The second approach for activity recognition
relies on using and installing sensors in the user’s environment to detect
and track their activities. It typically relies on sensors such as cameras, mi-
crophones and radars. This approach has several advantages:

1. Improved Utility: A sensor placed in the environment is generally
more suited to recognize a wide range of human activities. Unlike a
personal device, it is not attached to a particular limb and can track
all body parts independently.

2. User Burden: The individual burden on each user to keep their de-
vices charged, and to remember to carry them along all the time is
eliminated. It also requires no instrumentation of the user.

3. Cost: It is cost-effective to instrument the environment with one or a
handful of sensors than to expect each user to own and carry a per-
sonal device.

These advantages make ambient sensing a lucrative approach for ac-
tivity recognition by opening up the gateway to build smart environments.
And, there has been a fair amount of research in this area. The background
and related work (Chapter 2) covers the prior work in depth.
We explore ambient sensing from two lenses: privacy and practicality.

As we usher into a new era of high computing resources that support am-
bient sensing, this thesis focuses on the following areas:

1. Privacy Expectations: Privacy concerns are a challenge for any kind
of sensing approach regardless of modality. However, ambient sen-
sors such as cameras tend to be more invasive. Additionally, the lim-
ited control of a user over such sensors that capture a high amount of
sensitive information in a foreign environment leads to privacy con-
cerns that need to be understood and addressed.
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2. Reliability: While wearable and mobile sensors may not suitably de-
tect a wide range of activities, they are able to detect a handful of ac-
tivities with high reliability and precision. Ambient sensing to track
singular activities is able to detect activities with high precision as
well. But, the spatio-temporal distinction between different activities
of multiple users is still a hard problem.

3. User Identification: Modern ambient sensing techniques, especially
in shared spaces can passively sense and infer activities, but generally
lack the ability to identify individual users in that space. It limits their
ability to attribute specific feedback or build interactions that cater to
a specific user.

4. Data Collection to Train a Machine Learning System: While cam-
eras andmicrophones provide high sensing resolution, mostmodern
applications use machine learning to draw inferences from the raw
data provided by these sensors. The amount of data required to train
the system is typically high, thus making it hard to deploy in the real
world. Data collectionand labelingalthoughachallengeacross all ap-
proaches; it is slightly easier for mobile and wearable devices where
the whole data stream can be attributed with a single label. Ambi-
ent sensors such as cameras require a spatial label (e.g., boundingbox
around a person) and the activity label for its duration; or sensors such
as mmWave radar require either user intervention to collect labels or
an additional sensor (e.g. cameras) to record the ground truth and
generate labels later.

In this thesis, I tackle each of these areas to improve the current state of
ambient sensing. My contributions are as follows:

1. I present the results of amixed-methodsuser study tounderstand the
privacy perceptions of the user with cameras and various techniques
used to sense activities. I discuss how varying levels of privacy preser-
vation offered by different techniques impacts the privacy preference
of users.

2. I address the challenge of reliability by developing a novel method to
detect activities at scale such as exercises for multiple users using a
single camera [17] called GymCam. I use sensing techniques deemed
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to be trustworthy by users in the mixed-methods user study. I eval-
uated this system in an unconstrained environment to demonstrate
its robustness and reliability. I also discuss how my approach tackles
privacy.

3. Next, I show how a camera-based system such as GymCammay rec-
ognize users [18]. A hybrid approach using motion profiles as seen
froma camera and awearable is used to address the challenge of user
identification. I discuss howmywork empowers userswithmore con-
trol over how they may share their identity with an ambient sensing
system thus building a practical approach to privacy preserving user
identification.

4. I demonstrate that we can use off-the-shelf smartwatch IMUdatasets
to train an activity recognition system for mmWave radar sensor with
minimally labeleddata. I show thatdespite the lackof extensivedatasets
for mmWave radar, my domain adaptation approach can be used to
build an activity recognition system that can distinguish between 10
activities. My work enables building models for privacy-preserving
sensors such as doppler without the data labeling limitation.



CHAPTER 2

BACKGROUND AND RELATEDWORK

In this chapter I summarize prior work for the four key challenges of ambi-
ent sensing outlined in the introduction. While work in these 4 key chal-
lenges has largely been done independently, they are vital pieces to real-
izing a practical privacy preserving ambient sensing system. Each mod-
ule (subsection) focuses on one of these challenges and helps ground the
reader with a summary to characterize my thesis work appropriately.

First, I summarize prior work that has looked at privacy preferences and
concerns with ambient sensors. While my work focuses particularly on
camera-based or hybrid systems, these works help lay the groundwork to
understandwhywe should care to build privacy-preserving sensingmech-
anisms.

With an understanding of the outstanding challengeswith privacywith
regards to ambient sensing, next I outline some common techniques that
have been proposed in the past (both camera and non-camera) to achieve
privacy-preserving sensing. This subsection covers the kind of techniques
proposed in the past, their limitations and how my presented techniques
learn from these prior works.

Similarly, I outline prior work in user identification and point out how
there has been very little work in this area to achieve the desired outcome
without compromising privacy.

The last subsection examines prior work in using heterogeneous do-
main adaptation to solve the data collection problem; the last problem
before a practical privacy-preserving ambient sensing system can be de-
ployed.

7



8 Background and Related Work

2.1 Privacy Expectations Of Ambient Sensors

In this section, I summarize prior work in understanding privacy expecta-
tions when ambient sensors are deployed in an environment. It has been
shown that privacy and security practices impact the trustworthiness of
systems that leverage ambient sensors [19]. Studies have evaluated auser’s
privacy perceptions based on the type of data collected [20], the location
in which it is collected [21], and who is collecting the data [22].
The studies are usually focused on one environment such as a smart

home [23, 24], IoT devices embedded in toys [25], or custom devices with
ambient sensors [26] tounderstandprivacypractices employedby theusers
and their expectations. These works are critical in understanding the pri-
vacy perceptions of a user. However, they are generally limited to either
one environment or a specific device.
To gain an understanding of the larger context, Emami-Naeini et al.

conducted a large-scale survey to understand privacy needs of users with
a variety of ambient sensors in different environments [27]. It was one of
the first works to capture changes in a sensor’s privacy expectations by the
user depending on the environment and the data collected. The results
of such a study are crucial to understand what ambient sensors may be
acceptable in a particular environment. This study was complemented by
the work of Apthorpe et al. that captured the privacy perceptions of over
3800 information flows using a wide array of sensors, data types and the
conditions in which data is collected [28].
Despite a rich understanding of a user’s privacy preferences with differ-

ent sensors in varying environments, there is a glaring gap in our knowl-
edge. Therehasbeennoexplorationof how theprivacy expectations change
based on a user’s understanding of the underlying mechanism ultimately
used by the sensor. It has been shown that increasing people’s awareness
about the behavior of a particular sensor can influence their privacy per-
ceptions [29], and sometimes evenmake themmore comfortable [30]. So,
a gap that still exists is a better understanding of how the privacy percep-
tion of a sensor in different environment would change when the user is
aware of the underlying technique being used by the sensor to track their
activities.
Next, there have been improvements inmulti-object/human detection

and tracking in a single video [31], but it comes at the cost of user privacy
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as it uses identifying facial features to improve upon the tracking. We look
at some existing techniques for user identification as well.

2.2 Ambient Sensing Techniques

Next, we take a look at priorwork in ambient sensing. A survey of past tech-
niques is vital to better develop newermethods for ambient sensing. First,
I divide the ambient sensing approach into three sub-categories based on
the sensor- (1) We take a deeper look at use of cameras, that have primar-
ily been used for environment-centric approaches; and (2) we group non-
camera based motion tracking approaches; and (3) techniques that lever-
age the infrastructure in a space to sense activities. These categories cover
the breadth of sensing techniques for activity recognition.

2.2.1 Using Cameras For Activity Recognition

There are several activity recognition systems that focus on detecting sin-
gular activities such as fall detection [2, 32], in-home physiotherapy exer-
cises [33, 34] and sleep monitoring [35, 36].
The ideal activity recognition system can robustly learn to detect and

track any kind of activity with minimal training. There has been prior re-
search to achieve this lofty goal. Dreher et al. use a depth camera to cap-
ture the user’s pose and track their hands [37]. They also track objects
across the video and construct a scene graph from the object-action re-
lationship as shown in Figure 2.1. They use a graph network classifier to
train a system to learn the actions executed by the users with an 86% ac-
curacy. Such a system allows users to demonstrate the activity, and with
a couple of hours of training, it can learn to recognize those actions with
high precision. Other works have also tried to build actor relation graphs
to better understand individual activity for each user in the video, as well
as an overall summarization of the group activity [38].
Similarly, Bo et al. use the key idea of preserving temporal informa-

tion of an action across videos of various lengths[39]. It allows them to
capture a video descriptor that captures the important frame features re-
quired to recognize actions, but with only a few training parameters. They
were able to achieve high accuracy in action recognition using only 8-10
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Figure 2.1: System pipeline demonstrating pose tracking with OpenPose,
object detection with YOLO [44] in stage 1, tracking the pose and object
across frames using depth sensing in stage 2 and building the object-
action relationship graph in the final stage.

training samples. It builds and improves upon previous few shot activity
recognition systems [40–42].

Othershaveexplored the ideaof trainingactivity recognition viademon-
stration as well, specifically to improve human-robot interactions. Robots
inmanufacturing industries need to be trained in complex assembly tasks
that require them to not only know the objects involved in the process,
but also the right sequence of actions to assemble a product. Gu et al.
built a portable assembly demonstration system capable of recognizing
objects and capturinghumanmotion [43]. These are converted into a sym-
bolic representation. The kinestheticmovements involved in the action to-
getherwith the symbolic relationship are used to learn the activity demon-
strated by the user, to be repeated successfully by the robot.

However, there has been limited exploration of using cameras for activ-
ity recognition at scale. One of the key challenges of doing activity recog-
nition at scale is spatiotemporal distinction of one instance of an activity
from another.

Kim et al. used depth cameras to obtain pose information and track
elderly users in residential homes [45]. They used Hidden Markov Models
to detect and recognize activities such as falling down, watching TV, and
cooking with an average accuracy of 84.33%. The idea of tracking human
poses and buildingmachine learningmodels to detect activities has been
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explored several times in the past [46–49]. But, continued advancements
in pose detection techniques [50, 51] and machine learning has led to sus-
tained improvements in pose-based activity recognition techniques.
Caesar [52] uses three cameras to better understand the activities, ac-

tions and their interplay for a more complex understanding of the scene.
They used seven activities such as approaching another human and hand-
ing them stuff or loading the stuff and getting in the car.
The advances in deep learning have led to significant increase in per-

formance for human activity recognition in videos [53], but very few works
have extended tomultiple users in the same video. Almaadeed et al. used
threedimensional convolutional neural network (CNNs) in videoswithmul-
tiple users to detect activities for each one of them [54]. They detect and
track human motion and feed the cropped raw segments of videos for
each user into the CNN for activity recognition. While some other works
have dealt with multiple users in the same video, they are only capable
of classifying and summarizing the video as a whole instead of individual
human activities [55].

2.2.2 Non-Camera Based Motion Tracking For Activity
Recognition

Akin to the camera, the rawdata from2D lidar canbe clustered into human
and non-human activities. The motion trajectories obtained from the hu-
man activities have been classified into 15 different activities in the kitchen
with an accuracy of nearly 99% [56].
A common use case of environmental sensing has been the workplace.

Avrahami et al. used a RF radar sensor placed under a surface to recog-
nize work activities in a desk job, convenience store counter, and show-
rooms [57] as shown in Figure 2.2. Theywere able to classify commonwork
activities of a cashier suchas scanningan itemorbagging itwith 95%accu-
racy. Other radar-based sensors such as Doppler have been used to record
continuous motions for an individual, which combined with radar cross
section and dispersion features are used as inputs to a machine learning
model to segment and classify various activities [58].
As stated earlier, an ideal activity recognition system is able to learn dif-

ferent kinds of activities with minimal training. Wu et al. deployed mi-
crophones in the environment, and cluster various sounds they hear over
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Figure 2.2: The RF radar sensor encased in a 3D printed mount placed
under a surface (left). Sensor data as projected into a spherical coordinate
system. Image credits: [57]

time [59]. It is a self-supervised model that learns activities over time, and
when confident that a set of sounds belong to a singular activity (or clus-
ter), it labels it via a one-shot interaction with the user.
Roy et al. used a combination of ambient sensors and personal devices

from users in an environment to recognize complex activities of daily liv-
ing [60]. They demonstrated that motion sensors mounted on the ceiling
combinedwithdata collected fromsmartphones canbeused to effectively
recognize activities such as cleaning, cooking or taking medication. Oth-
ers have used an array of ambient sensors such as motion sensors, tem-
perature sensors, pressure sensors on couches and beds, reed switches on
doors and float sensors in bathroom to detect activities of daily living [61–
63].

2.2.3 Infrastructure-Mediated Sensing

Another popular approach for privacy-preserving sensing has been lever-
aging the inherent properties of the infrastructure in the environment to
detect, track and recognize various activities.
For example, Wang et al. monitor the change in WiFi signals over time

due to reflections from human body and model those changes to detect
activities [64]. They are able to distinguish between activities of daily liv-
ing such as walking, falling and sitting down. WiFi signals are also useful
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as a privacy sensitive platform for activity recognition at scale. They can
be used to accurately count the number of users present in an environ-
ment [65]. And, the variance observed in channel state information from
WiFi signals can also be used to distinguish between simple actions such
as walking, running and moving hands for multiple users in the same en-
vironment [66].

Otherwork includesusing single-point sensing solutions suchasmicro-
phones [67] and pressure sensors [68, 69]. to track and monitor the water
usage of each fixture in the house. Alternatively, researchers have devel-
oped specific water activity sensor consisting of a power harvesting circuit
and a piezoelectric sensor that can sense similar activities but with less
utilization of resources [70]. Similarly pressure sensors mounted on the air
filter or the HVAC system typically found in buildings can be used to deter-
mine the movement of individuals across different rooms [71].

Furthermore, infrastructure mediated sensing can also be used by cre-
ating our own signal and tracking it throughout the house. For example,
two modules installed at the extremes of the house that transmit a low
frequency signal can be used by receiver tags in different rooms of the
house to not only share their location (e.g., object tracking and positioning
through the house) but also enable novel interactions [72, 73]. Similarly, an-
other sensor installed on the powerline can use the unique pattern of elec-
tric noise generated when devices are in use (e.g., flicking a light switch) to
recognize when they are in use [74]. Furthermore, the electromagnetic
interference (EMI) signature of these devices is also unique [75] and can
be used to build an automated single point sensing event detection sys-
tem [76].

The characteristic EMI signature generated by these devices not only
can be tracked through the aforementioned sensing systems, but can also
be used to turn the device into a sensor itself. For example, LightWave
monitors the changes in theEMI signature anduses the changes in impedance
caused by proximity to a human hand to classify and detect hand ges-
tures [77]. This novel approach allows unmodified light bulbs (infrastruc-
ture) to now act as sensors that can recognize human gestures and enable
novel interactions. The same principle was also used to demonstrate that
the human body can act as an antenna, receive the EM noise present in a
user’s environment, and can be characterized to detect human gestures
on uninstrumented walls across a home [78].
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Finally, there has been some exploration into leveraging the physical
space and making it interactive too. Wall++ uses patterns of large elec-
trodes painted on the walls of a room using conductive paint to detect
user interactions via mutual capacitive sensing, and know which appli-
ances are turned on via airborne EM sensing [79]. This improvement in
context awareness allows richer activity recognition at scale within indoor
environments. After summarizing the prior work in sensing techniques, I
next look at the next challenge of sensing at scale: user identification.

2.3 User Identification

We break down prior research for identifying users into three categories:
(1) using facial recognition; (2) using custom hardware; and (3) using video
and IMU fusion techniques. We discuss the advantages and shortcomings
of each approach.

2.3.1 User Identification By Facial Recognition

As stated earlier, one of the most common biometric based techniques to
identify an individual in a group is facial recognition. It has gained promi-
nence with new techniques to improve the quality and robustness of this
technology [80, 81]. In fact, with sufficient data, it is robust enough to be
used in some countries to identify jaywalkers on a street crossing and fine
them [82]. In this section, we look at some use cases where facial recog-
nition has been used in the past. There are several applications of facial
recognition ranging from improvements in interactions between human
and robots [83] or improving diagnoses by identifying genetic disorders via
photos [84]. However, we only focus on prior work that uses facial recogni-
tion to determine the identity of the user.
A common use case of such technology has been in the classroom set-

ting. Tang et al. used cameras in an intelligent classroom to detect fa-
cial expressions, perform real-time evaluation of student performance and
provide feedback to the teacher [85]. Rewari et al. proposed an attendance
system to match the faces as seen through the camera with an existing
database of faces to automatically mark the presence of an individual [86].
Similarly, Monteiro et al. deployed a facial recognition system in a high
school classroom [87]. It compared the faces of students with an image
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database collected by the school to mark their attendance and manage
access controls to different classrooms.
Similarly, facial recognition is becoming more prevalent to provide ac-

cess controls to private objects in a public space such as your car [88] or
enabling door access [89] in an office. Del Rio et al. examined facial recog-
nition as an approach to build automatic border control gates. Finally, fa-
cial recognition has been at the forefront of surveillance systems [90]. In
fact, with a growing number of deviceswith a camera such as drones, prior
work has leveraged them to improve the surveillance state [91].
Such systems rely on accurately determining facial landmarks, and thus

require high resolution privacy invasive data to be collected. Once, such
data is collected- it can be co-opted for use in other systems without a
user’s explicit consent. This growing lack of privacy is a huge concern for
facial recognition-based systems [92].

2.3.2 User Identification Using Custom Hardware

Another prominent technique to identify users in a public environment
is to embed custom hardware on user’s belongings such as name tags
or bags. Mokhtari et al. conducted a comprehensive survey of custom
hardware-baseduser identification techniquesbetween2000and2016 [93].
We present some key highlights and summarize the different techniques
used in the past.
ID-Match uses RFID tags worn by people and correlates their motion

paths with ones observed from a depth camera [94]. Similarly, EyeFi uses
a WiFi chipset embedded next to a camera to capture motion traces. The
observed motion from the camera is used to improve the angle of arrival
estimates ofWiFi packets, which are then used to localize users in a shared
space [95]. RF-basedfingerprintinghas alsobeenused for gait-based iden-
tification [96–98].
Other approaches include instrumenting different objects in the en-

vironment with custom sensors. Hodges and Pollock used RFID sensors
placed on objects such as a coffeemaker to fingerprint each user’s unique
coffee brewing pattern to identify them [99]. An accelerometer attached
to different objects has also been shown to be capable of identifying users
in a similar manner [100]. Yamada et al. used pressure sensors mounted
on a chair to distinguish different users based on the differences in their
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seating [101].
Lastly, there has been several prior works that have explored the user

of smart floors to identify users. Orr and Abowd used a load cell embed-
ded in a floor tile to measure ground reaction force and build user profiles
based on their walking pattern [102]. Ubifloor extended this idea and used
switch sensors to extract walking patterns across the whole floor and was
able to achieve an identification accuracy of 92% for 10 people [103]. Several
floor-based identification techniques have followed since then that use dif-
ferent sensors such as microphones [104], accelerometers [105] and piezo-
electric sensors [106]. More recently, a geophone sensor has been used to
detect and capture footstep-based vibrations used to identify users. Pan
et al. were able to identify ten users with an accuracy of 96% with this ap-
proach [107].
Despite their ability to robustly identify users, the most obvious chal-

lenge with such techniques is instrumentation of the environment. It not
only adds cost, but in some cases (such as a smart floor) may require reg-
ular upkeep. Techniques that instrument objects in the environment, and
not the user with custom hardware also suffer from privacy control issues.
In a shared space, itmakes it difficult for users to control theuserdata/profile
collected by these sensors.

2.3.3 Video And IMU Fusion Techniques For User Iden-
tification

There has been limited exploration of techniques that have taken the ap-
proach of fusing video and accelerometer data for user identification. Teix-
eira et al. used two participantswith a network of cameras and an IMU em-
beddedon thebelt of oneuser. Thy used aprobabilistic approach tomatch
the locations from camera with the ones predicted from the inertial sen-
sors. This approach yielded 84% accuracy to distinguish this user from the
other in experiments where the users were instructed to generate motion
trajectories of 4-5 seconds [108].
There have been drastic improvements in the accuracy. CrossMotion

uses a depth camera and the onboard IMU on a smartphone to track and
identify users in a video [109]. It was able to localize a user within 7cmwith
a 99% identification accuracy. However, this technique was also limited
to a single device, and was not scaled for multiple users in the same en-
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vironment. Cabrera-Quiros et al. built upon this work and used a hybrid
approach to identify 19 real users in a video [110]. They used an overhead
camera, and a badge worn by the users that contained an accelerometer
and a proximity detector. The use of the extra proximity detector allowed
them to divide the crowd of users into subgroups and reduce the search
space for matching the motion traces of the wearable with the camera.
They further demonstrated their robustness by creating virtual users from
the 19 real motion traces collected during evaluation and accurately iden-
tifying 79% of the virtual users.
These techniques either require more sensors (e.g., proximity detector)

or are limited in their evaluation. The goal of our work is to make a deploy-
able solution that can leverage existing infrastructure and evaluate it in a
semi-constrained environment.
Keep this in mind, there are two systems that are perhaps the clos-

est to our goal. Masullo et al. improved upon prior work and used only
2D information from a camera with an accelerometer to identify 10 users
with an average accuracy of 76% [111]. While their overall accuracy is lower
than prior works, they were able to do so with a regular camera and IMU
and achieve user identification over short clips of only 3 seconds. Finally,
Henschel et al. used the orientation measurements as observed from the
IMU and the camera to identify 8 users playing soccer with an accuracy of
91% [112].
We have discussed sensing and user identification methods that are

largely based on machine learning methods that typically require a large
volume of data. One of the most prominent techniques to overcome the
issue of lack of labeled data is domain adaptation; a technique in which
labeled data from one modality/domain is used to train another. In the
next subsection we look at some examples of the same.

2.4 Heterogeneous Domain Adaptation

Most prior work on domain adaptation assumes that data of different do-
mains are of the same dimensionality or are drawn from the same fea-
ture space [113–115]. However, this assumption may not hold for many ap-
plications. Consequently, recent work has witnessed a rise in heteroge-
neous domain adaptation (HDA) techniques, which tackle the incongruity
of source and target feature spaces by mapping features into a common
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and closer subspace [116, 117], or exploiting the correlations between fea-
tures [118], or directly transforming data from one domain to the other [119,
120]. Although these approaches have shown promising results, they still
suffer from challenges. While mapping features into a predefined sub-
space may lead to the loss of shareable information, feature translators
which attempt to synthesize target data that follows source domain dis-
tribution (or vice-versa) are domain-specific and often difficult to be con-
structed in real-world applications. Moreover, most existing HDAmethods
simply learn multiple binary classifiers by adopting a one-vs-rest strategy
to achieve multi-class classification [121–123]. This hinders the full explo-
ration of the underlying structure amongmultiple classes in the target do-
main. Lastly, an additional layer of heterogeneity comes into playwhen the
source and target domains belong to different modalities. Cross-modal
domainadaptationapproacheshave succeeded in transferringknowledge
between modalities like vision and sound [124], text and vision [125], vi-
sion to inertial data [126] and inertial signals to video [116]. Even though
these approaches work well, they are limited by their need for paired, syn-
chronous instances in both domains (e.g., [116]). Despite this limitation,
there are some key takeaways from these proposed techniques. Most im-
portantly, that it is possible to robustly knowledge transfer between two
differentmodalities/domains by learning a latent shared representation. In
fact, some of theseworkswere even able to use lower dimensionalmodali-
ties such as IMU to knowledge transfer onto a higher dimensionalmodality
such as videos.

Next, we focus specifically on what is perhaps the closest prior work to
my thesis project. The following techniques have used differentmodalities
to train the doppler sensor for learning human activities. Vid2Doppler [127]
and Cai et al.’s work in RF sensing [128] uses videos, detects and tracks hu-
mans in them, reconstruct a 3D mesh and use them to generate a syn-
thetic signal that can be used to train the doppler sensor. In fact, these
approaches have been shown to work robustly and accurately without the
need for labeled paired synchronous data. However, they have a severe
limitation. The use and reconstruction of 3D human pose means that the
videos that can be used as a source need to have full human body visible
without any occlusion. This significantly reduces the size of publicly avail-
able labeled datasets that can be used by these two approaches.

Another very successful approach to reduce the data labeling cost for



2.4 Heterogeneous Domain Adaptation 19

the doppler sensor uses audio as a source modality to teach the doppler
sensor [129]. This approachconverts thedoppler spectograms intopseudo-
audio representations using a generative adversarial network (GAN) and
then uses a pre-existing sound classifier to classify activities. This approach
is an improvement over other approaches since it is neither limited by sig-
nal occlusion issues, nor does it require paired synchronous layer. However,
the systemstill requires a larger amount of initial data to build amodel that
can convert the doppler spectogram into its pseudo-representation. They
used a dataset of 1109 spectograms across six activities where each spec-
togram with each sample collected over a period of 5 seconds. Again, the
data labeling cost for a wide range of activities inhibits the use of this ap-
proach.
Based on our learnings from prior work, it is clear that generating syn-

thetic data or pseudo-representations overall performs better as a tech-
nique, but also presents severe limitations. Therefore, in ourwork, we build
on the idea of a shared latent feature subspace that shares the knowledge
of the source domain while also preserving the target domain characteris-
tics. We achieve the same using aminimal, asynchronously labeled target
dataset which is modeled by a multi-objective optimization learning ap-
proach that simultaneously constrains the domain confusion and multi-
class classification loss, thus overcoming the majority of the challenges
outlined in this section.





CHAPTER 3

MY APPROACH

Activity recognition is a crowded research space, and many sensing sys-
tems have been proposed to build the ultimate ubiquitous system. In this
thesis, I argue that there are limitations to using personal devices such
as smartwatches or smartphones for activity recognition. In response, I
present a co-evolutionof robust algorithms for ambient sensingand strate-
gies to mitigate common challenges that are unique to sensing activities
using sensors and devices in the user’s environment.

3.1 Key Characteristics Of Practicality

I identified and focused on two key characteristics of a practical sensing
system in this thesis. Arguably, there are several facets of what makes a
sensing system practical, but based on prior work and drawing from my
own experience, I focused on the following key characteristics in my work
while solving the ambient sensing challenges outlined in Chapter 1:

1. Deployability: Typically, a lot of the sensing systems are tested in
the lab in constrained or near ideal conditions. It shields these ap-
proaches from challenges that may occur in an in-the-wild deploy-
ment. To achieve practical sensing at scale, I focus on deployability
ofmyworkby rigorous testing inunconstrainedand semi-constrained
environments.

2. Unobtrusiveness: Apractical ambient sensing systemwould require
zero (or minimal) interaction from the user. It includes no calibration
steps or initialization gestures. The ideal system should automatically
detect, recognize and track user activities with minimal input from

21
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the user. All of my work in this thesis require zero calibration or initi-
ation by the user. The only interaction a user may have to do is to set
their privacy preference for identification and sharing data.

3.2 Summary Of Explored Approaches

The most obvious question for my work is what if we could eliminate the
limitationsofmobile andwearable sensors insteadofmoving toanenvironment-
centric approach? I sought to answer to the same question. I first started
to explore if sensing and interactions can be improved by removing some
limitations of personal devices. A smartwatch is inherently limited in its
functionality by its restrictiveposition. It leads to issues suchas limitedone-
handed user interactions and user fatigue for sustained interactions [130]. I
remove this limitation by building a detachable smartwatch [131]. The extra
ability to rotate and hold the device in different positions opens up several
new possibilities as shown in Figure 3.1. One example of such an activity
is improved fitness tracking, where a detached watchface can be placed
on the ‘right’ body part while performing a specific exercise. This semi-
automated approach leads to an increase in performance and reliable de-

Figure 3.1: (Top Row) In its default state, the watch on wrist can only be
used by one hand. If the watchface is then detached: (Bottom Row) Three
different uses of a detachable watch are shown; (1) mobility: ability to use
the watch in both hands; (2) heterogeneity: the ability tomorph into a bet-
ter sensor like attaching it to the shoe for better gait analysis, and (3) dock-
ing on bike for navigation.
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tection of the exercise, but it also introduces a new challenge: user burden.
The need to put the detached watchface in different locations is cumber-
some and another extra step a user has to perform before every exercise.
It makes it obtrusive to use. There is a trade-off between reliability and
user burden in personal device approaches.

Imove to ambient sensing and using the sameuse case of fitness track-
ing, I demonstrate that ambient sensing approaches can be used to have
both high reliability and zero user burden. I present Gymcam [17], a pas-
sive exercise tracking and recognition system that uses a single camera to
track multiple users at the same time(Figure 3.2). It leverages the insight
that almost all repetitive motion in a gym represents some form of exer-
cise. Such motions can be readily captured by a camera, despite heavy
occlusion, and used to segment and recognize various simultaneous ex-
ercises. I evaluated Gymcam in the university gym over a period of 5 days
without any intervention for a truly unconstrained testing. The system also
requires no feedback from the user and can automatically detect up to 18
exercises with an accuracy of 85%.

Even though Ihavedemonstratedhigh reliability in capturingand track-
ing the exercise, attributing it to a specific person in a room of 100 users
is still an outstanding challenge. Next, I worked on MotionID [18] to ex-
plore the interplay between environmental sensors and personal devices
of users in a space to address user attribution in a privacy-preservingman-

Figure 3.2: Multiple users doing various exercises being tracked using a
single camera using Gymcam.
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ner. Currently, we are able to identify each user individually in a group of
2-8 people by observing and correlating (just) their motion from a cam-
era and a smartwatch with over 95% accuracy. MotionID was tested across
three different activities (volleyball, dancing and poster sessions) withmin-
imal instructions from the researcher in an unconstrained environment
across several sessions recorded over multiple days. Despite only subtle
differences between users’ motion for the same activity, our approach is
able to capture these small differences for robust user identification. The
user only needs to turn on tracking when they want to be tracked akin to
common features such as location sharing on a smartphone.

These systems demonstrate robust algorithms for ambient sensing in
anunobtrusivemanner. The highperformance of both systems also shows
resilience to change in environmental conditions.

While both Gymcam and MotionID rely on cameras, I sought out effi-
cient methods to train a large machine learning system without incurring
significant labeling cost. Due to its popularity, videos have an extensive li-
brary of datasets but the larger problem of training an ambient sensor still
persists. Therefore, I shiftedmy focus to explore howwould one train a new
ambient sensor that does not share the same luxury of extensive datasets.
One such sensor is the doppler radar. It’s ability to measure motion in the
environmentmakes it a suitable privacy preserving (by default) alternative
to the use of cameras in Gymcam and MotionID. The same functionality
can potentially be replicated using a doppler sensor without the need of
a information-rich camera. Thus, to solve the problem of data labeling, I
showcase IMU2Doppler- an approach to build activity recognition models
for the doppler sensor using labeled data from IMU.

I also briefly touch upon the privacy-centric approach taken to develop
the sensing algorithms. As stated earlier, privacy is a big concern with am-
bient sensors such as cameras andmicrophones. Microphone based prod-
ucts such as Amazon Alexa have improved their privacy using wakewords.
A system that listens, processes the sounds but does not keep any infor-
mation until a specific wake word is used. An analogous method for our
camera-based systems is a hard problem. It requires the camera system
to reliably detect a specific gesture. A subtle and discrete gesture will be
hard to detect, whereas a loud gesture may not be socially appropriate. In
an effort to still preserve privacy, we incorporated it in our design. Both
Gymcam andMotionID usemotion profiles of users using optical flow and
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pose information respectively. A sensor to capture motion information 1

can replace the camera without any loss of performance. We also pro-
vide the user with more control over who tracks them using MotionID. If
the data sharing is turned off, the system cannot determine the identity of
the user. To better understand how these privacy preservingmechanisms
would impact a user’s comfort, we first conduct a large scale study tomea-
sure the impact of the knowledge of an underlying sensingmechanismon
a user’s preference.

1https://www.racedayquads.com/products/matek-3901-l0x-optical-flow-lidar-sensor

https://www.racedayquads.com/products/matek-3901-l0x-optical-flow-lidar-sensor




CHAPTER 4

UNDERSTANDING THE IMPACT OF
DIFFERENT SENSING TECHNIQUES ON
A USER’S PRIVACY PREFERENCES

4.1 Introduction

Therehasbeenameteoric rise in sensors to infer context, recognizehuman
activities and build smarter environments. Faster computation, network
resources and smaller form-factors have led to rapid deployment of sen-
sors to build smart environments. Despite a vast literature that explores
the privacy preferences of users especially with personal devices [132–134],
the privacy expectations and impact of different kinds of sensors in a smart
environment (shared or otherwise) have not been investigated as deeply.
One of the more information-rich yet privacy divisive sensor is a camera.
Cameras traditionally used for security and surveillance, now have been
shown to be capable of recognizing context [135] and track a wide range
of activities [17, 136, 137]. However, this information-rich sensing capabil-
ity of a camera is also perceived as a privacy nightmare [138, 139]. While
prior work has established the relationship between cameras, data type
collected, data sharing practices etc. in different environments [27, 140],
one critical piece that has currently not been studied is the impact of the
’knowledge of the underlying activity recognition mechanism’ on a user’s
privacy preferences. Prior work has discussed how privacy concerns in
sensingand interaction technologiesneed tobeunderstoodanddiscussed
in detail [141]. And, there have been improvements in sensing and interac-
tion technologies since then too. Newer sensing algorithms employ tech-
niques such as optical flow [142] or pose detection [143] to track user ac-
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Understanding The Impact of Different Sensing Techniques on A

User’s Privacy Preferences

Figure 4.1: Figure showing four different camera sensing techniques: (A)
optical flow; (B) pose detection; (C) thermal imaging; and (4) RGB imaging

tivities [17, 144, 145] that obfuscate personally identifying information by
default as opposed to prior ’blurring’ techniques that don’t preserve pri-
vacy [146].
In this work, I examine how three camera-based techniques (both soft-

ware and hardware) that can obfuscate personally identifying information
influence the privacy perception of the user. The three techniques used in
our work (Figure 4.1) are described below:

1. optical flow: This software-based technique allows a camera to track
themotion ofmoving objects in a scene. It tracks a pre-defined num-
ber of pixels across the video and tracksmovements of objects as they
shift between the pixels of the video. It allows a camera to recognize
activities based on just the motion without using any identifying in-
formation from the scene (e.g., exercises in a gym [17]).

2. pose detection: This software-based technique allows a camera to
track human bodies by approximating the position of different body
parts and reconstructing a body pose (or skeleton figure) from them.
OpenPose provides a more detailed explanation of how pose detec-
tion works [143].

3. thermal imaging: This hardware based technique uses a specialized
thermal camera that is capable of recording images using infrared ra-
diation in the range of 1,000nm - 14000nm. Broadly, higher temper-
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ature objects emit higher radiation and thus, this imaging technique
can be used to capture the variance in temperature across a room.

Weemploy amixed-methods approach. Wefirst conduct qualitative in-
terviews with 10 participants to better understand their existing relation-
ship (if any) with cameras in their house. We probed the participants on
their current privacy preferences, utility of the sensors and factors thatmay
influence their perception. Next, wedemonstrated that three camera-based
obfuscation techniques to theparticipants and recorded their feedback to-
wards the use of those approaches with regards to privacy and utility.
Weanalyze the semi-structured interviewsusing thematic analysis [147].

The key results from this first study are:

1. There was an improvement in trust with camera based sensingwhen
optical flow and pose tracking techniques were used. Thermal imag-
ing received mixed response with participant viewing that option as
only a marginal improvement.

2. There were two contrasting approaches when a subject purchases
a camera; the first prioritizes functionality over privacy whereas the
other group takes a privacy-first approach. This trade-off is an impor-
tant dimension to understand how different sensing techniques will
impact privacy preferences.

3. Users had varying levels of comfort with cameras in different environ-
ments. A substantial number of participants were okay (and some
even expected) to be recorded in public spaces but all participants
were privacy conscious in their home. This result corroborates prior
work in this area.

Next, we use our results from study one and relevant prior work [23, 27,
28] to design an online vignette study (conducted on mTurk with 633 par-
ticipants) to identify how the knowledge of the underlying sensing and
obfuscationmechanismmay influence the privacy perception of uses. Our
survey demonstrates that if a user is made aware that a camera is using a
privacy preserving sensingmechanism (optical flow, pose detection), then
it significantly enhances the trust and comfort of a user with the device
regardless of the location.
Our work establishes a new factor that influences the privacy prefer-

ences of users, and one that is increasingly becomingmore importantwith
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the advent of ambient sensing techniques. With the increase in number
of sensors in shared spaces, our work could prove crucial to building trust
between theuser and the environment, facilitatingmachine learningpow-
ered services and improved user experience.

4.2 Mixed Methods Approach

We took a mixed-methods approach to explore how the knowledge of an
underlying sensing mechanism may influence the user’s privacy percep-
tion of cameras. In our approach, we first conducted a qualitative study to
unearth user attitudes towards cameras and validate our hypothesis that
knowledge of different sensing techniques does in fact influence a user’s
privacy perception. The qualitative interview focused mainly on under-
standing the current privacy attitudes towards cameras as sensors, user
practices surrounding this sensors and their comfort with a public camera
in a shared space.
Based on our findings, we developed a large scale vignette study to de-

termine the relationship between factors listed in Table 4.1.

4.3 Study 1: Qualitative Interviews

4.3.1 Pilot

We first developed a list of around ten questions to capture the privacy
preferences of users with cameras as sensors in their house and shared
spaces such as gyms or malls. We conducted the pilot with two partic-
ipants where one participant was currently using cameras for home se-
curity purposes and the other did not employ cameras as sensors in their
house. Based on their responses, we refined our questionnaire to include
probes about practices users may follow to maintain their privacy. For ex-
ample, the participant with the camera exclaimed that despite knowing
that their video feed was encrypted, they would unplug the camera when
they were at home as an additional precautionary measure. Based on the
pilot interviews, we also added another question to ask the participants
about perceived utility of the three new camera-based techniques shown
to them. While a technique might be more privacy-preserving and per-
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ceived as safer, it might not be suitable for the specific tasks that the par-
ticipants were interested in tracking.

4.3.2 Study Procedure

Weconducted 10 semi-structured interviews to elicit howparticipants cur-
rently use cameras as sensors in their house. We probed them on the ex-
pected utility, their privacy concerns, preferences and current practices.
Wealsoprobed themon their privacy expectations in sharedenvironments
(e.g., gym and mall) where cameras may be used to track certain activ-
ities. Next, we showed the participants three camera-based techniques
that used for activity recognition butmay obfuscate personally identifying
information. These techniques are: (1) optical flow; (2) pose detection and
(3) thermal imaging. We showed an example video of a person performing
activities in the house and the output video if recorded using the afore-
mentioned techniques (Figure 4.1). All techniques were shown together
before we asked the participants any questions about their privacy prefer-
ences. This parallel prototyping method [148] has been shown to produce
better results and feedback from participants.
The interviews were conducted remotely using audio-video conferenc-

ing tools. Each interview lasted 40 minutes on average.

4.3.3 Participants

We used snowball sampling to recruit interviewees. We tried to balance
participants in age, gender, and their technical expertise. The participants’
[5 male, 5 female] age ranged from 22 - 40 (avg. = 29.3, std. dev = 5.94).
We conducted an initial screen to assess the participants’ security atti-
tudes. SA6 is a self-report survey shown to accurately capture security at-
titudes [149]. The SA6 score of our participants ranged from 1.3 - 4 (avg. =
3.08, stdev. = 0.81). This is slightly lower than the US average sample of SA6
scores but our range covers participants with varying security attitudes.

4.3.4 Data Collection And Analysis

All interviews were audio recorded and transcribed by the authors. We
performed open coding on the transcribed interviews to identify major
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themes in the data. We used thematic analysis [147] and identified three
major themes that inform not only how our participants perceived the
privacy-preserving activity recognition methods, but also their attitudes
towards a camera in different environments.

4.3.5 Findings

Based on the thematic analysis from the data collected in this initial in-
terview study, we present three key findings. First, we report our findings
on the additional comfort enabled by the knowledge of the three sensing
system techniques presented in this study. Next, we discuss how our par-
ticipants evaluated privacy risk against the utility of the camera for their
respective needs. We also discuss the current practices employed by our
participants to maintain their privacy comfort. And finally, we discuss the
mixed response attitude of our participants towards privacy concerns with
cameras and how it varies across different environments.

Impact of Sensing Technique on Privacy Comfort:

3out of 10participantswere familiarwith all of thepresented sensingmech-
anisms shown int he study whereas an additional 3 were familiar with a
subset (most commonly, thermal imaging). When asked about their com-
fort with different techniques, all participants exclaimed that pose detec-
tion and optical flow would make them feel more comfortable compared
to thermal imaging and the standard information-rich RGB video feed.
Thermal imaging received amixed response from theparticipants. 4 out of
10 participants stated that while they thought thermal imaging was more
privacy preserving than a standard rgb feed, they did not feel that it offered
enough ’protection’ that they would consider it a significant improvement
over the standard video feed. Whereas all 10 participants agreed that the
other twomechanismswere a significant improvement in terms of privacy
over the standard feed and thermal imaging.
For example, one participant [M, 36] stated, Yeah, for me, I am most

comfortable with the slide 4 [pose detection]. And my second most com-
fortable would be slide two [optical flow]. [...]. Slide three [thermal imag-
ing] is the same as slide one [raw video feed], because it does capture as
much data; because it capture[s] the background, [and] objects as well.
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To further explore this dimension,wealsoprobed theparticipants about
what kind of activities (cooking, if fans/light were left on, exercising, watch-
ing kids and elderly etc.) they would wish to track around the house and
how useful would such a mechanism would be for some of these activi-
ties. Despite not have the technical expertise, the participants were able to
grasp theunderlyingworkingof each technique fromthe videospresented
to them and were able to differentiate why one technique would provide
more utility over another. For example, one participant [M, 35] correctly
identifies that while a motion based technique like optical flow would be
suitable for tracking if the fan was on, it will not be able to track if the lights
were left on. Another participant [M, 27]stated that they would want the
full rgb video feed for home security purposes in case they want to iden-
tify an intruder, but would like to have the option of switching modes to
a privacy-preserving technique when they are at home and use the cam-
era to track home activities. The trade-off between utility and privacy is
hard to navigate but there is supporting evidence from our work that the
knowledge of the underlying sensingmechanism can improve the privacy
comfort of cameras in a house.
Even though comparing perceived utility and privacy is not the focus of

this work, it helps us further expand how two similar cameras with differ-
ently programmed sensing techniquesmaybeperceived. If amoreprivacy
preserving sensing mechanism (e.g. on-camera pose detection) is able to
provide the same utility for specific use cases, it may become a viable op-
tion for some. In fact, one user [F, 24] stated the following about using pose
detection for exercise tracking (a utility they cared about): So, I will feel
comfortable putting it in a corner where I exercise and not worry about it
being turned on all the time. which is in contrast to the current behavior
of our participants.
In fact, 4 out of 10 participants agreed that they would be okay keeping

the video on if a more privacy preserving mechanism was being used by
the camera.

Privacy vs Utility:

5 out of 10 participants in our study currently owned a camera that they
use primarily for home security and as baby monitors. We asked these
participants about their decision making process when they purchased
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the camera. 3 out of 5 participants reported that they evaluated the utility
of the camera service video quality, data storage, easy to use accompa-
nying app etc.) and then looked for common security measures such as
encrypted video feeds. The other 2 participants reported taking a privacy-
first approach where they sought out tech reviews, tech specs pertaining
to security and privacy. Their rationale was that most products catering
to a specific need (e.g., babymonitoring) would provide similar functional-
ity. Hence they prioritized sorting their preferences based on the security
first. This brings out an interesting dynamic between privacy versus utility.
While one group optimizes for utility and is satisfied by an acceptable level
of privacymeasures; the other groupmaximizes for privacy and is comfort-
able with an acceptable level of utility.
Despite this early difference between the purchase-making behavior,

all 5 participants reported using additional measures to improve their pri-
vacy comfort in the home. All 5 participants reported that they either phys-
ically unplug/turn off the camera when they are at home. A common rea-
son cited by the participants was that they don’t want to the camera to
inadvertently record compromising videos and/or the utility of the camera
as a home security system is minimal if the owner is at home.
One user said [F, 29], ”No I physically turn it off when I’m at home, and

whenever it’s on it’s always connected to the internet, because that’s how
the app interacts with the camera. [The] reason is, there might be some
hacking, and someonemight gain unauthorized access to the feed, that’s
the main reason I keep it turned off. Yeah, just to avoid any unauthorized
access to when I’m actually at home. That’s the main point.”
Another user exclaimed [M, 35], Yeah, I don’t want the camera in my

house to see me walking around naked all the time, that sort of thing.
Despite each participant owning a camera that met their own bar for

privacy and security standards, we saw practices such as these that instill
an extra sense of comfort in users. This lack of trust is a key finding fromour
interviews. However, in some cases this impacts the utility of the camera
as well. Two participants reported that sometimes they would forget to
turn the camera back on before they left the house, making the camera
obsolete for security purposes.
I have to remember to turn it on, which is like, 10% of the time actually

remember. [M, 27]
This trade-off between privacy and utility is an interesting dimension
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that needs to be studied in more detail. However, it is clear that privacy
preferences are impacted by the knowledge of the sensing mechanism;
and for certain use cases, the knowledge that a camera system is pro-
grammed to use a certain technique can factor into the decision-making
process for a user’s purchase.

Variance of Privacy Preferences Across Environments

Unsurprisingly, it was evident that there was a lot of variance in people’s
attitude towards cameras depending on the location. 6 out of 10 partici-
pants shared that they assume they are always being recorded in public
and if they are in a public space such as a mall, they do not care if there is
a video camera that is recording them. However, upon further probing 4
out of those 6 participants stated that they would not want to be recorded
in places such as gyms or workplaces without knowing what the data is
being used for. This result is corroborated by prior work in this area [150].
Whenwe further probed these participants about why the locationmakes
a difference, each participant had a different response/reasoning. For ex-
ample, while one participant [F, 30] was comfortable being recordedwhile
atwork; they did notwish the gym to have access to their exercise videos in
fear of them being misused for marketing or otherwise. In stark contrast,
another participant [M, 24] did not care about them being tracked at the
gym but did not want their supervisor to track their every move at work.
The remaining 4 participants said that while they would ideally prefer

not to be recorded, the limited control over a public space leaves them
helpless. All 10 participants shared that they would at least like to know if
a camera is actively recording them; and only 4 participants cared about
knowing the purpose of the data collection.
Wealsoprobed theparticipants on their thoughts about receiving smart-

phone notifications about the presence of a camera if they enter a new
space. In fact, 2 participants brought up this idea even before the inter-
viewer could probe them. All participants reacted positively to the idea
and 2 participants stated that they would like to receive this notification
only the first time they enter a new space whereas the other 8 participants
stated that they would like to receive such a notification the first time and
every other time there is a ’significant’ update that impacts their privacy or
consent in any form.
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While most participants were comfortable with a camera in a public
space, the most important takeaway from these findings is the variance
seen in how people react to cameras in different environment. This study
also reveals that the underlying sensing mechanisms can help mitigate
privacy concerns in different scenarios. For example, knowing that the op-
tical flow technique is only being used to trackmovement to control lights
and/or possible accidents in a workplace; it might mitigate privacy con-
cerns of an employer tracking the employees every single move.

4.4 Study 2: Large Scale Vignette Study

To further confirm our hypothesis at a larger scale, we conducted a within-
subjects vignette studyonAmazonMTurkwith633participants. We showed
each participant 5 different vignettes with different data collection scenar-
ios. We varied the factors listed in Table 4.1 in the vignettes. Each factorwas
chosen based on our data from qualitative interviews to determine how
an individual’s privacy preferences would be impacted by the knowledge
of the sensing algorithm; and which algorithmwould bemore suitable for
varying locations.
After accepting the MTurk HIT, the participants were directed to a sur-

vey link where they were shown the vignettes. The vignettes were struc-
tured consistently and followed the same order of factors each time start-
ing with the location and ending with an example view (except the no al-
gorithm scenario). An example vignette is presented below. The variables
are shown in bold.

There is a camera in yourworkplace. It knows your identity. When you
enter yourworkplace, you receive a notification on your smartphone:
A camera in this space uses thermal imaging to track users. An ex-

ample view of what the camera sees is shown here:
From all possible combinations of factors in a scenario, we created 8

subsets of 5 scenarios where each subset contained all levels of a factor
at least once. Each participant viewed one subset chosen randomly (with
even distribution). The ordering of scenarios was also randomized.
For each scenario, the participants were asked if they were comfort-

able in the scenario (5-point likert scale). We also asked the participants
if they would allow the data collection in the described scenario and how
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Factors Levels
Location (1) own house, (2) friend’s house, (3)

workplace, (4) mall
Algorithm (1) raw image (regular rgb cam-

era), (2) thermal imaging, (3) optical
flow, (4) pose detection

identity known (1) knows identity, (2) does not
know identity

notification type (1) notification about presence of
sensor with algorithm and im-
age, (2) notificationaboutpresence
of sensor without algorithm men-
tioned.

Table 4.1: Table showing all factors and their corresponding levels used in
the vignette study

useful was the notification. We also probed the participants on additional
questions such as what kind of data would they be comfortable sharing
and why. At the end of all scenarios, the participants were asked sum-
mary questions. We questioned the participants on how difficult was to
understand the camera tracking technique (sensing algorithm) from the
notification. We also asked them about what information would they seek
from a notification like this. Lastly, we collected demographic information
from the participants.

4.5 Results

Our survey was completed by 644 participants. We removed the answers
of 11 participants because they took less than 5 minutes to finish the sur-
vey whereas the average completion time was 14minutes. Our results are
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Figure 4.2: Figure showing participants comfort level across different lev-
els of locations and different levels of sensing algorithms

computed based on the remaining 633 responses. Participants were re-
quired to be from United States, have an approval rate greater than 98%,
and a minimum of 500 approved HITs. The participants were given $2 for
their time. According to our demographics, our survey was taken by 352
males, 269 females, 4 non-binary and 8 unspecified. The median age of
our participants was 26 (stdev = 11.68).
In our survey, after describing a scenario (vignette)- we asked the partic-

ipants how comfortable do they feel in a given scenario. Figure 4.2 shows
the general distribution of participants’ comfort level across location and
sensing algorithm. Unsurprisingly, participants were most comfortable
with having a camera in their own home (not factoring the sensing tech-
nique). This can be attributed to the control they exert over the device if
they own it and the environment it is placed. While participants in our
qualitative were more open to being tracked in a mall, as opposed to a
workplace; our survey participants rated them almost equally when the
sensing technique is not factored in.
Next, our results from the qualitative interviews were substantiated in

the vignette study with optical flow and pose detection being the most
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Figure 4.3: Figure showing participants’ comfort level with different sens-
ing techniques in different locations. The value represents percentage of
people that chose4or 5 on the comfort 5-point likert scale for eachof those
conditions.

preferred method followed by thermal imaging and the regular rgb cam-
era placing last on the comfort scale (Figure 4.2). This means regardless of
the scenario, ourparticipants feltmore comfortable in theprivacy-preserving
sensing techniques that do not capture asmuch information compared to
a regular raw image/video.
Now, we explore the relationship between the various factors in our

study. Figure 4.3 outlines the comfort level of participants with different
sensing techniques across different locations. We calculated the percent-
age of participants that chose 4 (somewhat comfortable) and 5(extremely
comfortable) on the 5-point likert scale for scenarios that had an interac-
tion between the values presented in the figure (location x algorithm). We
can see that all techniqueswere comfortable for participantswhen the de-
vicewas present at their own house. While optical flow and pose detection
rankedmuch higher, even the full rgb image capture was comfortable for
at least 50% of the respondents. We attribute this to the privacy control
that a user has over the device, its policies and the environment. With the
exception of workplace where thermal imaging was the preferred choice
(by a small margin), optical flow and pose detection were consistently the
most valued options.
We can confirm from these results that knowing the underlying sens-

ing mechanism indeed influences how comfortable a user would be with
a device in a particular environment. We also confirm this by comparing it
to the conditionwhere the algorithmwas not specified. Weuse aWilcoxon
Rank Sum Test tomeasure significant differences (if any) between the two
conditions. The results are reported in Table 4.2. As evidenced from the
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Raw Imag-
ing / No
Algo

Thermal
Imaging /
No Algo

Optical
Flow / No
Algo

Pose De-
tection / No
Algo

Own house p=0.81 p=0.41 p=0.001 p=0.013
Friend’s
house

p=0.007 p=0.18 p=0.006 p=0.002

Workplace p=0.83 p=0.0002 p=0.001 p=0.003
Mall p=0.32 p=0.33 p=0.016 p=0.014

Table 4.2: Table showing results of wilcoxon sign-ranked test when a no-
tification with algorithm is compared with the condition where the notifi-
cation does not contain information about the algorithm.

table, optical flow and pose detection significantly influence the privacy
perception of individuals in every location. Combined with the prior re-
sults (Figure 4.3 we can infer that the user’s comfort level in the camera
improves when they are informed about these two specific sensingmech-
anisms. Interestingly, the notification reduced the trust of users in a cam-
era (rgb condition) when the device is at a friend’s house. A possible ex-
planation of this result could be that while users are aware that they are
most likely being recorded in public (also supported by our earlier inter-
views), they may not expect to be recorded at a friend’s house. Making
users aware of the possibility that a friend may have a device that records
themwhen they are theremay reduce their trust in the scenario. However,
this possible explanation needs further examination.
We did not find a significant impact of the identity variable in any of the

conditions. There was an average increase of 6% in usefulness of the noti-
fications when they contained the description of the algorithm, however
the results were not statistically significant. When asked in the summary
questions, 76.4% of the participants stated that they were able to under-
stand the camera tracking technique (sensing algorithm) from the notifi-
cation easily (extremely easy or somewhat easy on the likert scale).

4.6 Discussion & Conclusion

Our mixed methods approach verifies that the knowledge of a sensing al-
gorithm influence a user’s privacy perception and may help build trust in
certain scenarios. Weconductedqualitative interviewswith 10participants
and probed themon their current practices and preferences with cameras
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in their house and other locations. We also showed them several different
sensing techniques and captured their feedback on how it influences their
privacy. Finally, we probed them on other factors that impact their privacy
preferences.
Some of the factors that came up in our interviews have been studied

extensively in prior work [20, 21, 27, 151]. We chose not to include these fac-
tors in our follow-up vignette study for two reasons. First, we wanted to
ensure lower number of factors in our vignettes to truly capture the rela-
tionship between the camera, location and the sensing algorithm. And
secondly, the relationship between other factors (except the sensing algo-
rithm) is well-established. We acknowledge that understanding the rela-
tionship and interaction effects of these factorswith the sensing algorithm
is important and would be an important future work.
Our follow-up vignette study with 633 participants provides evidence

that knowing about privacy preserving sensing techniques (optical flow,
pose detection) can instill trust in the users. Both techniques significantly
increased trust in users regardless of the location and scenario.
As the prevalence of IoT and devices increases, wemust continue to im-

prove privacy awareness. Ourwork demonstrates thatmaking users aware
of some of the inner workings of a sensing system can massively improve
the trust of users in certain scenarios. Our work also used minimal notifi-
cations to establish a relationship between the factors studied in this pa-
per. We demonstrate that sensing algorithm is one key part of a privacy-
awareness notification in a shared space and is a first step in designing
appropriate privacy notifications for ambient sensing.





CHAPTER 5

GYMCAM: DETECTING, RECOGNIZING
AND TRACKING SIMULTANEOUS
EXERCISES IN UNCONSTRAINED
SCENES

5.1 Introduction

Regular physical workout improveswell-being and reduces the risk of obe-
sity, diabetes, and hypertension [152–154]. To maintain overall health and
build strength, the Centers for Disease Control and Prevention (CDC) rec-
ommends adults to strength train at least twice a week1. However, despite
the benefits of regular exercise, most people struggle to maintain steady
progress. This failure is often attributed to lack of motivation and feed-
back [155–157].
One way to tackle lack of motivation is through gamification and track-

ing [158]. The ability to viewpersonalizeddata enhances awareness anden-
ables reflection of exercise regimens [159]. However, capturing and track-
ing a regimen is challenging. Manual tracking is most accurate, but this is
tedious for end users. Thus, numerous commercial and academic efforts
have focused on automatically tracking and quantifying physical activity,
themost pervasive being step count captured by aworn device (e.g., FitBit,
Apple Watch, [160, 161]). Nowadays, consumer devices can track some car-
dio and strength-training exercises using special applications2,3. These ap-

1Centers for Disease Control and Prevention. Physical activity recommendations for
adults: cdc.gov/physicalactivity/everyone/guidelines/adults.html

2Gymaholic: http://www.gymaholic.me
3Gymatic: https://itunes.apple.com/us/app/vimofit-auto-exercise-tracker/

43
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Figure 5.1: GymCam uses a camera to track exercises. (Top) Optical flow
trackingmotion trajectories of various points in the gym. Green showcases
points classified as exercises and red showcases non-exercise points. (Bot-
tom Left) Individual exercise points are clustered based on similarity to
combine points belonging to the same exercise. (Bottom Right) For each
exercise (cluster) GymCam infers the type of exercise and calculates the
repetition count.
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plications generally rely on awearable’s inertialmeasurement unit (IMU) to
monitor e.g., arm motion as users perform different exercises. Such tech-
niques can be robust for some specific exercises, but fail for many others
due to sensor placement where there is limited signal. For example, Mau-
rer et al. found that detecting ascendingmotion such as climbing stairs is
more accurate when the IMU is attached to the bag than when attached
to a person’s shirt [162]. Similarly, data from a smartwatch is inadequate for
exercises involving other parts of the body (e.g., leg presses). An alternative
is to instrument the exercise machine rather than the user, but that is too
intrusive and also makes free-weight and body weight exercises harder to
track. This presents a need for a method to robustly identify and track a
wide range of exercises that a user might perform, while maintaining the
seamlessness offered by wearable devices.

To this end, we present GymCam (Figure 5.1), a vision-based system
that uses off-the-shelf cameras to automate exercise tracking and provide
high-fidelity analytics, such as repetition count, without any user or envi-
ronment specific training or intervention. Instead of requiring each user
in the gym to wear a sensor on their body, GymCam is an external single-
point sensing solution, i.e., a single camera placed in a gym can track all
people and exercises simultaneously. One camera-based approach would
be to track body motions to detect user pose [163, 164]. However, these
techniques are error-prone due to significant occlusion in gym settings
(e.g., Figure 5.2). Thus, instead of attempting to accurately estimate body
keypoints (i.e., skeletons), GymCam leverages the insight that almost all
repetitive motion in a gym represents some form of exercise. Such mo-
tions can be readily captured by a camera, despite heavy occlusion, and
used to segment and recognize various simultaneous exercises. We also
found that it is extraordinarily rare for two separate people to exercise at the
exact same rate and time, allowing for robust segmentation even when
users are adjacent.

To develop and evaluate ourmachine learning algorithms, we collected
data in our university’s gym for five days. In total, we recorded 42 hours of
video and annotated 597 different exercises. We did not record the num-
ber of gymusers because our protocol required immediate anonymization
of the data (i.e., faces blurred). Users of the gym were informed that a re-
search team was recording video, but there was no other interaction with
participants, minimizing observer effects (e.g., intentional or unintentional
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Figure 5.2: In gym settings, user pose can be challenging to determine
due to significant occlusion.

changes to their routine). We note this problem often affects research
studieswhereusers are aware they arepart of an exercise tracking research
study, and the evaluation setting is constrained [12]. We believe this paper
presents the first truly unconstrained evaluation of exercise tracking.

The overall process of GymCam is as follows:

1. Detect all exercise activities in the scene (acc. = 99.6%), then

2. Disambiguate between simultaneous exercises (acc. = 84.6%), then

3. Estimate repetition counts (± 1.7 counts)

4. Recognize common exercise types (acc. = 93.6% for 5 most common
exercise types).

5.2 Theory Of Operation

We now discuss the underlying premise behind GymCam that allows it
to: (1) detect motion, (2) cluster motions into separate exercises, and (3)
identify and track individual exercises.
GymCam leverages the insight that almost all repetitive motion in a

gym represents some form of exercise. Even if a camera cannot see an
entire person, it is still often able to see a small part of the body exhibiting
repetitive motion, and can track that body part, linking it to an exercise
later. However, whenmultiple users are exercising and potentially overlap
in a video, it can be hard for camera-based systems to delineate the exact
boundaries between the exercises – an issue worn sensors do not have to
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Figure 5.3: Awristworn IMU (circled in the photos) is not ideally positioned
to monitor many exercises.

handle. Fortunately, we found it is extremely rare for two users to perform
their exercises at exactly same time, speed, and phase (Figure 5.4). Thus,
by calculating features that capture these dimensions, GymCam is able
to differentiate between simultaneous exercises without any supervised
training data.

Apart from distinguishing different users, there are other challenges
when relying solely on repetitive motion tracking. Foremost, periodicity
can be exhibited by a user’s gait or warm up before starting an exercise.
Secondly, when placed in an unconstrained environment, users tends to
be less deliberate with between-exercisemoments (e.g. fidgeting, stretch-
ing, walking). These interludes can be quite periodic, and thus indistinct
from exercises. Moreover, in the unconstrained environment of a gym,
users may challenge themselves (e.g. lift challenging weights). Morris et
al. [12] observed that ”self-similarity [or periodicity] may break down in in-
tensive strength-training scenarios. For this reason, more validation of in-
tensive weightlifting is important future work.” We believe that the only
viable approach to solve the problem of variations in exercise and noisy
human behavior, is to collect extensive training data in the user’s actual
workout environment without significant observer effect.

5.3 Data Collection

We collected data in the Carnegie Mellon University’s varsity gym over a
five-day period.
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Figure 5.4: Four users performing same exercise at different phase and
frequency. y-axis shows displacement in terms of pixels.

5.3.1 Participants And Protocol

To ensure a wide, unobstructed view, we placed one camera on a wall at a
height of approximately 4meters. This placementwas also inconspicuous,
aiming to minimize observer effects (e.g., users altering their warm-up or
stretching routine, lifting usual weights). The university’s Institutional Re-
view Board and Department of Athletics officials agreed that as long as
videos were immediately anonymized, we did not need signed consent
from participants. Nonetheless, gym users were informed that a research
team was recording anonymized videos and any questions, comments or
objections should be raised to the gym staff (though none did). Thus, gym
users were given no instructions regarding exercises, repetitions, breaks,
etc., and is as close to unconstrained data collection as practically possible.

We used a Logitech C922 camera at a resolution of1920× 1080 to record
15 frames per second (fps) video. We used a state-of-the-art face detection
algorithm [165] to blur the faces of gym users and anonymize the videos.
After dropping periods when the gymwas empty, we had 42 hours of data
spanning 5 days. We hand annotated 15 hours of this video, which con-
tained 597 exercise instances.
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Figure 5.5: Custom video annotation tool. Annotators drew the bounding
boxes, andmarked the start and end time for each exercise. They used the
text annotation option to add exercise type and repetition count.

5.3.2 Labeling

To annotate our captured videos, we tested several tools, but found that it
was hard to efficiently annotatemultiple exercises in the same framewhile
simultaneously recording their location, the repetition count and the type
of exercise performed. In response, we built a custom annotation software
(see Figure 5.5).
This software allows an annotator to load a video and use a mouse to

draw bounding boxes around an exercise. The annotator can then edit
the start and end frame for the annotation to correspond to the start and
end of the exercise. The software also provides basic functions such as
play/pause and fast forward at different rates. When the annotator indi-
cates an end frame for a bounding box (i.e. an exercise), the software re-
quests the repetition count. The annotator also has the ability to add text
annotations to each bounding box, recording any notes of interest. We
open-sourced our tool4, and researchers can easily customize it for their
specific use.
We recruited and trained two student annotators. Theywere instructed

to not count any exercise with fewer than 3 repetitions. For exercises such

4https://github.com/zacyu/exercise-annotation-tool

https://github.com/zacyu/exercise-annotation-tool
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as running on a treadmill, elliptical or other cardio machines, the annota-
tors were simply asked to label ”cardio” when asked for a repetition count.
The annotators did not annotate ill-defined periods as exercises, but well-
defined warm ups were labeled appropriately.
To allowmultiple annotators towork simultaneously, we split each recorded

video into 5 minute segments and the annotators processed these frag-
ments in batches. If any exercises got split across two video segments,
we counted them as two different exercises. This would never occur in
a practical scenario since the input would be a continuous video stream.
However, it was a procedural decision for us to ensure efficient paralleliza-
tion of effort. The annotation software recorded all annotations as a JSON
file. These files could be reloaded, along with their corresponding videos,
tomake any post-hoc changes to the annotations if needed. After all exer-
cise start times, end times, and repetition counts were annotated, a single
annotator labeled the exercise types. As there are several variants of each
exercise, anddifferent individualsmay call one exercise by different names,
this process ensured quality and consistent labels.

5.4 Algorithm

The goal of our work is to detect, identify, and track exercises, including
when people are only partially visible. In fact, the real test of our approach
iswhen theuser isbarely visible, but the camera canmerely see aweight or
a handlebar moving. Thus, GymCam starts by identifying all movements,
and classifying them as repetitive or not. There could be several move-
ments in a video that belong to the same exercise (e.g.,movement of dif-
ferent limbs, weights, and handlebar), so we combine similar repetitive ex-
ercise movements into exercise clusters. Next, for all motion trajectories in
each identified cluster, we derive a combined trajectory to recognize the
exercise type and estimate repetition count for that exercise (cluster). We
will now describe our pipeline (Figure 5.6) in detail.

5.4.1 Detecting Exercise Trajectories

To detect movement, we start by extracting optical flow trajectories from
our video. We initially investigated OpenCV’s implementation of Lucas-
Kanade sparse optical flow [166]. However, the algorithm failed to track
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Figure 5.6: GymCam system architecture.

large, sudden movements and we switched to Wang et al.’s [167] dense
optical trajectory extractionmethod to process all motion captured by the
camera. For every video frame, the algorithm generates new keypoints,
which are tracked continuously across frames to produce a motion trajec-
tory. We found a keypoint max lifespan of 11 seconds was ideal for captur-
ing several exercise repetitions, while also managing the processing time
needed to track thousands of points in a video stream.
These motion trajectories are then converted into features and passed

to a classifier. To limit the number of data points, we trimmotion trajecto-
ries by removing stationary points (i.e., any keypoint that moved less than
4-pixels between frames). We then normalize motion trajectories by their
maximum translation and calculate a feature vector over an (empirically
determined) sliding window of five seconds, with a stride of one second.
Our feature vector consists of 27 features, a subset of which have also been
used in prior work (see [12, 168]).

• Frequency-based features: Our working principle is that exercises
are more periodic than non-exercises. We use frequency-based fea-
tures to encode this property:

– Number of zero crossings: We calculate the number of zero
crossings of the keypointmotion trajectory, only in the x-axis, and
only in the y-axis.

– Variance in zero crossings: Exercises will be more periodic and
have a lower variance in zero crossings than non-exercises.

– Dominant Frequency: The dominant frequency of the signal
calculated by frequency transformation.

– Autocorrelation: Autocorrelation characterizes theperiodicity of
a signal.
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– Maximum autocorrelation peak: Higher value indicates higher
periodicity.

– Frequency via autocorrelation: The dominant frequency of sig-
nal determined via autocorrelation.

– Number of autocorrelation peaks: Unusually high number of
peaks indicate noisy signals, which are more likely to be non-
exercises.

– Number of prominent peaks: Represents the number of peaks
higher than their neighboringpeaksbya threshold (25%). Agreater
number of prominent peaks indicates higher periodicity.

– Number of weak peaks: Similarly, we calculate the number of
peaks smaller than their neighboring peaks by a threshold (25%).
A greater number of weak peaks represents noisy and less peri-
odic motion.

– Height of first autocorrelation peak after first zero crossing.
The height of the first peak after a zerolag provides an estimate
of the signal’s periodicity.

• Non-frequency-based features: Apart fromthe frequency-based fea-
tures, we also calculate some non-frequency based features:

– RMS: The root-mean-square amplitude of the signal.

– Span: The span of the motion helps to characterize the intensity
of the motion. We use overall span, and span in both x- and y-
axes as features.

– Displacement Vector: Displacement helps us distinguish be-
tweenexercises andotherperiodicmotions suchaswalking. Non-
exercise motions (such as walking) often have a higher displace-
ment than exercise motions. We use the coefficients of the over-
all displacement vector, and displacement in both x- and y-axes,
for a total of 9 features.

– Decay: Decay signifies the loss of intensity over time, a character-
istic of exercise motions. We fit a line to the observed trajectory
and use its coefficients as features.

We filter motion trajectories to bias our classifier to minimize false pos-
itives, at the cost of lower precision. This is because when an person is
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exercising, not all body parts may be involved in the motion. For exam-
ple, legs do not move during a bicep curl, so a keypoint on a person’s leg
may be inside the bounding box created by an annotator, but would not
be periodic. Similarly, improper formmay cause a point tomovewhile per-
forming an exercise. Thus, not every motion trajectory inside an ”exercise”
bounding box is indicative of actual exercise motion. To protect the classi-
fier from inaccurate training data, we filtermotion trajectorieswith aggres-
sive thresholds on frequency-based features. By filtering, we only provide
the strongest andmost representative examples of exercise trajectories to
train our classifier. However, we do not perform any such filtering while
validating the algorithm.
We use a multilayer perceptron (Scikit-Learn implementation with de-

fault hyperparameters) to classify every 5 secondwindow segment of each
keypoint trajectory as an exercise or not. The neural network optimizes the
log-loss function using stochastic gradient descent. To smooth the output,
we take amajority vote of three consecutive classifications and assign that
as the output for each of those three classifications. Finally, we combine
all consecutive positive classifications to construct amotion trajectory that
was predicted as an exercise.

5.4.2 Clustering Points For Each Exercise

Exercises are often captured by many keypoint motion trajectories. Thus,
our next step is to cluster keypointmotion trajectories into exercise groups.
We perform clustering in two steps: (1) use spatio-temporal distribution of
motion trajectories, and (2) use phase-differences between motion trajec-
tories (Figure 5.4).
Given an exercise, themotion trajectories of its encapsulating keypoints

will likely be close to one another in space and time. For space, we boot-
strap the clustering algorithm by drawing bounding boxes next to each
workoutmachine and station. Note, this only needs to happen once at the
start of the system deployment (assuming machine and stations do not
move). These boxes are non-overlapping and are representative of the ex-
ercise areas of the gym. Figure 5.7 shows these bounding boxes and also
a distribution of exercises in our dataset.
Apart from spatial distribution, we also investigated the temporal sep-

aration between exercises. The exercise keypoints that overlap temporally



54
GymCam: Detecting, Recognizing and Tracking Simultaneous

Exercises in Unconstrained Scenes

Figure 5.7: An image of the gymwith a distribution of all the exercisemo-
tions observed across all videos. The white boxes are the manually-drawn
boxes to aid in clustering.

as well as spatially are assigned to the same cluster. However, there is still
a chance that exercises that are close to one another and occur together
will be wrongly combined. To seperate such clusters, we also use phase
information. For each cluster, we compute a phase-based similarity score
between each trajectory-pair. For a pair of points that are not temporally
co-located, the similarity is set to zero, and for others, the similarity is equal
to the phase difference. We then threshold the phase difference (15 de-
grees) to assign a binary similarity score. In the end, we have a complete
N×N adjacencymatrix, whereN denotes the number ofmotion trajectory
points classified as an exercise. Given such a matrix, we calculate all con-
nected graphs. Each graph denotes one exercise cluster associated with
the nearest bounding box.
At the end of clustering, we combine the trajectories of all keypoints

within a cluster to create a representative, average trajectory for further
analysis (Figure 5.8). More specifically, we take the average of all the points
within the cluster, accounting for the duration of each point, and smooth-
ing it with a Hann window (size=1 second). This trajectory is used in our
next process: exercise recognition and repetition count.
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Figure 5.8: Individual and combined trajectories for an exercise. The x-axis
is frame numbers (15 fps).

5.4.3 Repetition Count

Once a representative, average trajectory for each cluster is obtained from
the previous step, we calculate the repetition count. To objectively disam-
biguate actual exercises from warm ups, we disregard any exercises that
have less than five repetitions in the ground truth annotations. We train
a multilayer perceptron regressor (Scikit-Learn; default hyperparameters)
that uses our frequency-based features for each combined trajectory (as
detailed in section 5.4.1), and outputs an estimate for the repetition count.

5.4.4 Exercise Recognition

Similar to repetition count, we leverage the cluster-average trajectory to
infer the exercise type. We first quantize the trajectory into fixed-length
segments as input to our classifier. We then run a sliding window (length
five seconds, stride of one second) over this motion trajectory. Each win-
dow is passed to a multi-layer perceptron classifier (Scikit-Learn; default
hyperparameters) to predict the exercise label, and we take a probability-
based majority vote over all windows in the trajectory.

5.5 Results
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5.5.1 Detecting Exercise Trajectories

We first report the results for distinguishing keypoint motion trajectories
as exercise or non-exercise. For this, we performed a leave-one-day-out-
cross-validation, which yielded a per-day, mean cross-validation exercise
detection accuracy of 99.86%, with amean false positive rate of 0.001% and
precision of 23%. Again, we optimized our algorithm to reduce false posi-
tives at the expense of precision.

5.5.2 Clustering Points For Each Exercise

There are 597 distinct exercises in our ground truth annotated data. Gym-
Cam was able to accurately track 84.6% of these exercises. It also had a
false positive rate of 13.5%, with most errors due to miscellaneous cyclic
non-exercise motion such as warm-ups, rocking while seated, and walk-
ing.

5.5.3 Repetition Count

Repetition count accuracy helps in objective assessment of the time over-
lapbetweenapredictedcluster and its correspondingground truthmatch.
We used 5-minute folds for cross-validation and achieved an accuracy of
±1.7 for counting repetitions with a standard deviation of 2.64.

5.5.4 Exercise Recognition

As discussed previously, our datawas collected in an uncontrolled environ-
ment where participants were not instructed to perform a specific set of
exercises, and so the distribution of exercise types was not uniform. Par-
ticipants performed numerous atypical exercises and curating a balanced
training set of conventional exercises from our data was challenging. We
identified 18 common gym exercises and annotated their instances in our
dataset (Table 5.1). We decided to disregard warm-up exercises because
the annotator labeledmany different exercises as ”warm-up”. The remain-
ing 17 exercise types were classified with an accuracy of 80.6% with cross-
validation across 5-minutes folds (Confusion Matrix: Figure 5.9). The five
most frequently performed exercise types constituted roughly 69% of our
data. We noticed that a lack of training data caused the less frequently
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Figure 5.9: Confusionmatrix for exercise identification across 17 exercises.

Figure 5.10: Confusionmatrix for exercise identification across 5 exercises.
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Table 5.1: Count of different exercise types

Exercise Type Count
Squats 126
Deadlift 124
Benchpress 55
Arm Extension 56
Dumbell Bench-
press

51

Shoulder Press 27
Pullups 24
Dumbell raises 18
Pushups 10
Cardio 9
Lat Pulldown 8
Dumbell Flies 8
Lying Dumbell
Flies

4

Bicep Curl 3
Dumbell Raises 2
Tricep Extension 2
Dumbell Press 1
Warmup 69

seen exercises to be misclassified. Thus, if we only focus on the most fre-
quent exercises, GymCam recognition accuracy increases to 93.6% (Con-
fusion Matrix: Figure 5.10). Figure 5.11 shows the average identification ac-
curacy as the number of recognized exercise types increase. This result
indicates that our approach has the potential to differentiate between ex-
ercises based on our feature set, but a larger annotated dataset is needed.

Figure 5.11: Plot showing the accuracy of exercise recognition vs. number
of exercise types
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Figure 5.12: The blue boxes represent ground truth, and the green boxes
represent predicted exercises (clusters) in each image. Left enclosed in
red: Examples of exercises where one exercise gets broken into two sepa-
rate clusters. Right enclosed in green: Examples of exercises where two
exercises get combined into a single cluster.

5.6 Discussion And Limitations

GymCam provides an end-to-end pipeline to detect, track, and recognize
multiple people and exercises in real-world settings, overcoming issues
such as noisy data and visual occlusion. Based on our observations and
experiences from building the system, we now discuss limitations to our
approach. Besides completely missing an exercise, there are two types of
major failure modes when an exercise is not recognized properly: (1) two
exercises get clustered as a single exercise; and (2) one exercise gets split
into two separate exercises as shown in Figure 5.12.

5.6.1 Reliance On Motion Differences For Clustering

When two or more individuals are exercising close to each other, and ex-
hibit similar motion features such as phase and frequency, the individual
exercise motion keypoints for each exercise may get combined into a sin-
gle cluster. For example, itmay occur during a groupworkout, whenmany
people are roughly synchronized. Such cases are unavoidable, and should
be expected to occur in uncontrolled environments. A potential solution
is to augment GymCam with depth or body pose information to improve
spatial clustering of nearby keypoints. Additionally, higher framerate cam-
eras could offer finer-grained phase information (i.e., at 15 fps, participants
synchronized to within 7̃0 ms are indistinguishable).
Secondly, fatigueor improper exercise formmaycause aperson to show

high variance between repetitions of the same exercise. Such irregular
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movements affectsGymCam’sperformanceas thealgorithmrelies onphase-
based similarity of repetitions of the same exercise. In cases with irregular
movements, the similarity between trajectories decreases, which may in-
troduce clustering errors and cause one exercise to be incorrectly broken
into separate clusters.

5.6.2 Tracking Irregular Motions

The backbone of our algorithm is effective capture of motion trajectories
across many keypoints. One of the most popular approaches to capture
motion trajectories is Lucas-Kanade Optical Flow. While highly regarded
and versatile, in our dataset, the algorithm failed to track exercise motion
reliably. After investigating many failure cases, we realized that the algo-
rithm failed to continuously track a keypoint if a personmade sudden big
movement, and instead initialized a new keypoint (not necessarily in the
same location). Trajectories obtained from such keypoints do not contain
sufficient information to classify repetitive and non-repetitive motions. To
solve this problem, we used a variant of optical flow that ismore resilient to
irregular movements [167] and allows GymCam to classify individual mo-
tion trajectories as exercise/non-exercise with high accuracy (acc. = 99.6%).
It highlights two potential points of failure in our approach: (1) choosing
relevant keypoints to obtain motion trajectories in a frame; and (2) suc-
cessfully capturing motion trajectories for the duration of the exercise.

5.6.3 User Identification

GymCam detects, recognizes, and tracks the exercise, but does not iden-
tify the user. Correlating the information between two sensors could be
used to identify users. For example, Amazon Inc.’s Go Stores5 combine in-
formation from users’ phones, in-store cameras, and on-the-shelf sensors
to track shoppers and their purchases. Similarly, practical deployment of
GymCam could combine information from either a camera-based identi-
fication system or correlate data from a user’s wearable device [18] or use
some form ofmanual identification step by the user (e.g., using RFIDs [169]
or QR codes [170] next to each workout station). It is arguable that rely-
ing only on pose-tracking might help in detecting the exercises as well as

5http://www.wired.co.uk/article/amazon-go-seattle-uk-store-how-does-work
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identifying the users. However, our pilot experiments showed that the cur-
rent state-of-the-art pose tracking approaches were unable to handle the
occlusion challenges.

5.6.4 Viewpoint Invariance

An ideal camera-based system would be viewpoint invariant and not re-
quire calibration for every camera position. Considering GymCam uses
some spatial information, it is not entirely viewpoint invariant. Forexercise
recognition, we use a simple bootstrapping and each area where users
are likely to exercise is annotated. In a regular gym, where machines do
not change positions, this annotationwill be a one-time process. To detect
whether a user is exercising, we only use time- and frequency-based fea-
tures that do not change with position. Thus, it can be viewpoint invariant
but we have not evaluated it formally.

5.6.5 Privacy

Using cameras enables accurate exercise tracking that is not limited to cer-
tain kinds of motion, but of course also raises privacy concerns. We ac-
knowledge that the end-to-end system in our system required capturing
the raw video, but our prior work in measuring user’s privacy preferences
has shown that if optical flow can be computed on the chip, that instills a
sense of trust in the users. What we showed in this work is that with this
processed signal, GymCam can detect exercises, but sensitive user infor-
mation is not easily recoverable. Indeed, with on-camera compute power,
this could be the only data transmitted from the device, or perhaps the
entire classification pipeline could be run locally.

5.6.6 Unconstrained Evaluation Environment

The primary insight of our algorithm is the periodicity of repetitions. How-
ever, asMorriset al. point out [12], periodicity is especially hamperedduring
strength-training scenarios. When lifting challenging weights, for exam-
ple, users often become fatigued and lose pace. Such issues are uncom-
mon in cases where users participate in a user study, as the primary goal
is not to challenge participants physically. In contrast, we developed and
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evaluated GymCam in a truly unconstrained environment, offering greater
ecological validity andamore strenuous test. In addition tobetween-exercise
movements and warm-ups, GymCam had to face an extra noise source:
moving objects. For example, some participants in our dataset performed
TRX (Total Body Resistance Exercise) workouts using ropes. Inmany cases,
the suspended ropes kept oscillating after the exercise ended. Consider-
ing GymCam does not detect body pose and treats all repetitive motions
equally, these rope oscillations resulted in a few falsely-recognized exer-
cises.

5.7 Conclusion

With the surge in quantified self and health-focused wearable devices, the
interest in exercise tracking is also rising. While tracking cardio exercises is
relatively easy, tracking repetitive strength training exercise is still an out-
standing problem. Most popular solutions involve using motion sensor-
equippedwearables, but thesedevices are inadequate for capturingawide
range of exercises, especially ones involving other limbs. In this paper,
we presented GymCam, a system that leverages a single camera to track
a multitude of simultaneous exercises. GymCam relies on tracking mo-
tion and assumes that most repetitive motion in a gym are exercises in
progress. To develop and evaluate our machine-learning algorithms, we
collected data in CMU’s varsity gym for five days. We segmented all con-
currently occurring exercises from other activities in the video with an ac-
curacy of 84.6%; recognized the type of exercise (acc.=92.6%) and counted
the number of repetitions (± 1.7 counts). GymCam advances the field of
real-time exercise tracking by filling some crucial gaps, such as tracking
whole body motion, handling occlusion, and enabling single-point sens-
ing for a multitude of users.



CHAPTER 6

MOTIONID: A HYBRID
CAMERA-WEARABLE APPROACH TO
IDENTIFY USERS IN A GROUP

6.1 Introduction

Recent improvements in computer vision and machine learning have led
to a surge in applications and products that can passively sense differ-
ent activities, enable personalized service, provide feedback to the user
and enhance interactions. More specifically, cameras have enabled sens-
ing at scale such as smart hospitals [171], smart offices [172] or even smart
gyms [17]. Applications that work at scale with tens and hundreds of users
at the same time require amethod to identify eachuser in the scene. There
are two common strategies to identify users:

1. biometric-based identification such as facial recognition [82, 173].

2. using custom hardware such a RFID tags [94] or smart insoles [174].

Facial recognition is economic, accurate to a reasonable degree but re-
quires highly privacy invasive data from users. On the other hand, cus-
tomhardware based solutions do not infringe on the user’s privacy but are
not economical or easy to deploy. Therefore, there is a need for an iden-
tity recognition system that is cheap, easy to deploy and privacy sensitive,
while maintaining a similar level of utility and usefulness as other tech-
niques.
In this paper, we present MotionID- a hybrid computer vision and iner-

tial sensor system that leverages the similarity in motion as observed from

63
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Figure 6.1: Figure showing the intuitive approach of our system to use
motion from body pose andmotion from IMU to identify users and enable
applications in restaurants and grocery stores.

the twomodalities. It uses a regular RGB camera to obtain themotion pro-
file of a person using pose detection [50]. It also uses the IMU present in
a smartwatch worn by the user to capture the motion of their arm, and
provide the system with the identity of the user. We measure the correla-
tion between the two motion profiles to calculate a measure of similarity,
which is used to attribute the identity obtained from the smartwatch to
one of the poses as seen through the camera. MotionID does not rely on
any privacy invasive features, and a smartwatch reliant approach allows an
opt-in ecosystem to be built around this technology. Additionally, as dis-
cussed in Chapter 4, open pose instills a sense of trust in the users. While
we used cameras in our setup, an on-device pose detection chip can be
used to preserve user privacy while identifying users in a group.

To develop and validate our approach, we collected data from three dif-
ferent activities (playing a sport, social gathering, and dancing), each with
a group of 2, 4 and 8 people for a total of 9 conditions. These activities
are representative of some common use-cases of sensing at scale appli-
cations. Additionally, we chose these specific activities to validate our ap-
proachacross: (1) degreeofmotionobserved in anactivity; and (2) similarity
of motion across people at the same time.
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Our results demonstrate that on an averagewe are able to identify users
in a group of 2 with 100% accuracy regardless of the activity. We were able
to identify users with an average accuracy of 90% in a group of 4, and 95%
in a group of 8.
Finally, we discuss the implications and use-cases of our work in retail

for cashier-less shopping, smart offices, and smart gyms as shown in Fig-
ure 1.

6.2 Theory Of Operation

In this section we outline the working principle behind our approach. We
discuss some intuitive approaches that we tried, and postulate why they
did not work, and how they informed our proposed algorithm.
The most common approach is to measure the correlation between

the acceleration measured from both the pose tracking in the video and
the IMU from the smartwatch. First, we attempted to correlate accelera-
tion signals. We calculated the acceleration from the pose information in
the video, and used varying window sizes for finding correlation. In each
video, we calculated the correlation between each pair of pose and watch.
This technique seemed to work well for smaller groups. We were able to
achieve 100% accuracy in groups of 2 with small window sizes. However,
for larger groups of 4 and 8 individuals, the results did not look promising.
From our results, there were two noticeable challenges-

1. Activities with a low degree of motion such as poster presentations
were performing worse. We attribute it to the error caused by dif-
ferences in how the acceleration is calculated in bothmodalities. The
error amplifieswith a higher number of comparisons, especiallywhen
themotions are small. Even one incorrectlymatched pair propagates
the error for other poses as well. For example,

correlation{P1, W1} = 0.7

correlation{P4, W1} = 0.72

where P(n) refers to a pose in the video and W(n) refers to the data
from the watch/person in the scene. Here, The actual match should
have been between P1 andW1, which objectively has high correlation
value. However, due to the accumulated error in acceleration calcu-
lation for the tiny differences between the movements of P1 and P4,
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P4 ends upmatching withW1 with a higher correlation value, forcing
P1 to find the next most suitable pair.

2. If a person would leave the video frame, the missing data in accelera-
tion causes issues with matching the right pair. This was apparent in
high degree ofmotion activities such as playing volleyball. Whenever
a personwould leave the video frame to fetch the ball, theywould run,
bendquickly to pick the ball, and sometimes even kick it. These are all
prominent events being captured by the IMU, but not by the video-
leading the falsely correlated pairs. This problem was further exac-
erbated by imperfect tracking of poses. If the pose is not detected
accurately for some frames, it would degrade the acceleration mea-
surements from the poses.

To reduce noise, we then attempted to extract relevant features to de-
scribe the accelerometer signal fromboth video and IMU data. For varying
lengths of windows, we extracted features that would describe the shape
of a motion trace- max value, min value, standard deviation for both X and
Y axis, RMS of the combined XY signal and so on. It was able to reduce the
error for highmotiondata. The loss of datawas ”smoothed” over by extract-
ing only relevant features from the entire signal. However, this reductive
approach further amplified the error in small degree of motion activities
such as meeting.
Next, we sought out more informative signals. We used the yaw and

pitch values obtained from the Apple Watch 1 and used them as a proxy
for motion traces in X and Y axis, similar to the ones obtained from poses
in the video. This signal was less noisy compared to the acceleration. The
correlation of these signals yielded similar results for people in groups of 2,
and worked well for high motion activities like volleyball in groups of 4 as
well. However, lowmotion activities were still getting confused with an in-
crease in number of participants. We attribute this to yaw and pitch being
a proxy for movement in the 2D coordinate space, and their calculation for
smallermovements ismore prone to noise. In a small window size, this can
lead to a lot of variance in matching pairs of poses and watches. We con-
firmed this hypothesis by using largewindow sizes (> 2mins) to reduce the
effect of these noise prone movements. All activities in a group of 4 were
recognized with high accuracy in this scenario.

1sensorlog.berndthomas.net/

sensorlog.berndthomas.net/
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Using such a large window size may be suitable for some activities, but
would make it unusable in a multitude of scenarios. However, we do have
informative signals that are able to help us correlate poses with their re-
spective user watches. To overcome the issue of error prone low move-
ment moments, instead of looking in a specific window, we changed our
algorithmto search ”loudandhighlydistinguishable”moments. Westarted
looking for specific moments in the pose signal where it change in signal
is above a certain threshold within a small duration of time. The intuitive
idea is to look for moments that would be highly distinguishable in the
pose data, and look for matches in the IMU data by finding the correlation
for that part of the signal. This technique works well in most cases. We
were able to identify users in groups of 2 and 4 with high accuracy regard-
less of activity. In groups of 8, high motion activities were recognized with
high accuracy, but the lowmotion activity was only able to identify half the
users correctly. Even though the technique itself was sound and robust,
the lack of highly distinguishable moments made it harder to distinguish
between signals.

We have outlined these techniques, and where they failed to not only
underscore the difficulty of this task, but also to provide insights into what
approaches may work in different circumstances. For example, in a sce-
nario where there is no expectation of a user leaving the frame, or the ac-
tivities are deemed to be high motion- then some of the aforementioned
approaches will also be suitable for use. With those assumptions, it may
even work in a smaller window size compared to our proposed approach.

One key observation we made with our prior approaches was that dif-
ferent approacheswere able tomatchdifferent pairs of poses andwatches.
While all of them had some problems, they worked quite well for different
kinds of challenges. Armed with this insight, we use several different sig-
nals in our proposed approach. We also take the PCA of combined signals,
and extract the same features that serves as a proxy for only retaining the
’interesting’ moments in a signal. Besides more input signals, we want to
overcome the issue of requiring a long signal (> 2mins) for accurate results
as seen in one of the earlier approaches. To do so, we also extract features
to measure similarity of signals in both frequency and time domain, and
combine it with correlation values to determine similarity between pair of
signals.Weseek a trade-off between accuracy and the amount of time
required by the system to identify users in a group.
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6.3 Data Collection

The key parameter in this work is motion. We selected three activities
based on two different dimensions:

1. degree of motion: the expected size of movement in an activity

2. expected synchronized motion: how likely is it that two or more
users would perform the samemotion at the same time

Based on these criteria, we chose three different activities:

1. Volleyball: Volleyball is a team sport where the expected movement
size is big. The players run towards a ball, try to place it in a particular
position or hit it hard enough to make it on the other side. However,
there is very little expected synchronization. Even if two people are
performing actions at the same time, they are likely to be different
(defense vs offense; or hitting the ball from opposite ends of the net).

2. Poster Sessions: The second activity we chose was poster sessions.
In this activity, the primary task is for a person to talk about their
poster. The expected movements involve them moving their hands
and gesturing, which would be small in size. But a little synchroniza-
tion canbeexpected. It is possible for thepresenter andoneof the au-
dience members to perform similar gestures when talking or point-
ing to a specific part of the poster.

3. Dancing: The last activity in our dataset is dancing. The movement
size in a dance is big. And, we specifically looked for dancing groups
that perform a piece in synchronization. This activity is a true test of
our system’s reliability.

For each activity, andeachgroup size of 2 and4 individuals, we recorded
five sessions of data. For poster sessions and volleyball, we randomly se-
lected groups from a participant pool of 18 individuals. For dancing, we
recruited a large dance group, and randomly shuffled groups for each ses-
sion.
For a group size of 8, we again recorded five sessions of volleyball. How-

ever, we recorded one long 18-minute poster session. Groups of 2 and 4
capture the smaller natural interactions that happen at one poster. In the
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larger 8-person group condition, we wanted to capture the whole activity
of a poster session where the audience is free to move from one poster to
another. Lastly, due to covid19, we were unable to record any data for a
group of 8 people dancing together.
We collected the data over several days and in different locations. We

used a single iPhone SE (1st generation) to capture and record RGB videos
at a resolution of 1080p and 30fps. All participants also wore an Apple
Watch Series 4.

6.3.1 Extracting Motion Information

Smartwatch: The SensorLog application 2 available on theApple app store
was used to record IMU data in the background. In addition to the user
acceleration, it also logs the yaw, pitch and roll values. The datawas initially
recorded at 50Hz but was later down sampled to 30Hz.
Video: The videos were recorded at 30fps. We developed a custom

tool that uses Deep Sort [175] on top of OpenPose [50] to track body poses
across the whole video. We manually fixed any tracking errors generated
from our custom tool. We logged the position of all keypoints available via
OpenPose but we only used the LWrist (left wrist) in our setup. All partici-
pantswore the applewatches on their left arm, soweused only themotion
information captured by LWrist in OpenPose. Hereon, we refer to the po-
sition of LWrist as pose information, unless explicitly stated otherwise.

6.4 Algorithm

The goal of our work is to identify users in a group in a privacy preserving
manner. To this end, we leaned on an approach that uses both the cam-
era and the smartwatch for identification. The reliance on smartwatch to
identify users allows them to gainmore control over their privacy, and how
and when their data is shared. Similar to prior work, our approach also re-
lies on finding similarities in the motion as observed from the video and
the smartwatch (IMU) tied to a user’s wrist.

2http://sensorlog.berndthomas.net/

http://sensorlog.berndthomas.net/
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6.4.1 Feature Computation

As stated in Theory of Operation, we built on aspects of prior work and our
failed approaches. We developed amachine learning algorithm that relies
on features that describe the shape of each signal from both modalities.
It also takes input features that themselves are a measure of similarity be-
tween two signals (from different modalities). Altogether we have a total
of 576 features. First, we describe the different signals that we use to com-
pute these features.
The list of the signals is:

1. accX-v: the X-axis accelerometer signal from the video.

2. accX-w: the X-axis accelerometer signal from the smartwatch.

3. accY-v: the Y-axis accelerometer signal from the video. Both accX-v
and accY-v calculated from the pose information obtained from the
video.

4. accY-w: the Y-axis accelerometer signal from the smartwatch.

5. accMag-v: the magnitude of the accelerometer signal at each sam-
ple i.e. sqrt(a2x + a2y).

6. accMag-w: the magnitude of the accelerometer signal at each sam-
ple i.e. sqrt(a2x + a2y)

7. accPC1-v: the project of the X and Y axes of the video acceleration
signal onto its first principal component.

8. accPC1-w: the project of the X and Y axes of the watch acceleration
signal onto its first principal component.

9. poseX: the X-axis value of pose information obtained fromOpenPose
for the left wrist.

10. pitch: movement around the pitch axis recorded on the smartwatch.

11. poseY: the Y-axis value of pose information obtained fromOpenPose
for the left wrist.

12. yaw: movement around the yaw axis recorded on the smartwatch.
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13. poseMag: themagnitudeof thepose signal at each sample i.e. sqrt(pose2x
+ pose2y)

14. movMag: the magnitude of the combined pitch and yaw signal at
each sample i.e. sqrt(pitch2

i + yaw2
i ).

15. posePC1: the project of the X and Y axes of the pose signal onto its
first principal component.

16. movPC1: the project of the pitch and yaw axes from the watch onto
its first principal component.

We calculate the following features for each of the 16 signals.

1. statistical features:Wecalculatemean, standarddeviation, variance,
kurtosis and skew for a total of 5 statistical features.

2. RMS: the root-mean squared amplitude of the signal.

3. prominent peaks: we calculated the total number and location of
two most prominent peaks in the signal for a total of 3 features. The
intuition here is that the location of prominent peaks in signals from
both modalities should occur close to each other.

4. power spectrum features: we calculate the magnitude and mean
of the power spectrum in 10 bands spaced equally between 0.1-15Hz
for a total of 20 features.

We calculated the following features for every signal pair (listed in or-
der). For example (accX-v, accX-w) is one pair and (poseX, pitch) is another.

1. Pearson’s correlation: it is a measure of how closely associated are
the two input signals.

2. similarity in time: the two signals are multiplied and added in place
to generate a single similarity score.

3. similarity in the 90th percentile shifted time domain: multiply the
fast Fourier transform of each signal, and then take an inverse fast
Fourier transformof the resulting signal. Thenwe only retain the 90th
percentile of the signal to retain the most interesting parts. We then
calculate the sum,mean andmax of this signal for a total of 3 features.
This feature set is similar to calculating correlation between two sig-
nals shifted in time domain.



72
MotionID: A hybrid camera-wearable approach to identify users in a

group

4. similarity in frequency: we take the Fourier transform of the two
signals, which are then multiplied and added in place. We calculate
the mean and max for a total of 2 features.

5. similarity in the 90th percentile shifted frequency domain: We
first multiply both the signals and take the fast Fourier transform of
the resulting signal. Then we only retain the 90th percentile of this
signal. We calculate the sum, mean and max of this signal for a total
of 3 features.

6. similarity in signal variance: both signals are squared, normalized
and then ameasure of similarity in signal variance is obtained by sub-
tracting one from the other.

7. circular correlation: we calculate the circular correlation between
the two signals and take the sum,mean andmax of the resulting cor-
relation values for a total of 3 features.

A total of 29 individual features calculated from each signal results in a
total of 464 signal. And 14 features calculated for 8 pairs of signals adds
another 112 features for a total of 576 features used in our system.

6.4.2 Matching Users

We take a stringent approach to testing our system. No data from the con-
dition being tested (even a different session) was included in the training
for that activity. So, if we were testing the group of 8 participants playing
volleyball, our machine learning system was only trained on users playing
volleyball in groups of 2 and 4. And some activities were recorded in dif-
ferent locations. For example, the group of 2 dancing were recorded in a
different room than the group of 4 subjects dancing. Similarly, the poster
session of 2 users was recorded in a room different than the one used for
poster session with 4 and 8 individuals. For volleyball, even though the
same court was used- the data was recorded over several days, without a
fixed point for the camera setup. The researchers used an approximately
similar viewpoint each time. Not using the data from the condition being
tested strengthens our results and demonstrates location and viewpoint
invariance.
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We trained a Random Forest Classifier with the default parameters to
classify if two signals were similar or not. We use the probability score from
the output of the classifier to rank potential candidates and find the best
match for each pose in the system. If two poses have the same watch as
their highest ranked candidate, the pose-watch pair with the higher prob-
ability score ismatched together, and the other pose looks for its next best
match.
For our evaluation that retains prior history of classification, we use a

normalized running score for probability scores added over all windows.

6.5 Results

We look at the results in the size of the group. Identifying users in a smaller
group size regardless of the activity is easier than a larger one. So, we first
look at the simplest case of two users in the same environment.

6.5.1 Group Of 2

Weused awindowsize of 45s to calculate features and regardless of the ac-
tivity poster session, volleyball or dancing- on an average across 5 sessions,
we were able to identify 100% of the users within the first 45s. All sessions
of all activities of this group size were recorded for 3 minutes each. When
we retain the history, we were able to continue identify 100% of the users
with 90s, 135s and 180s of video duration as well.

6.5.2 Group Of 4

We again used a window size of 45s to calculate features for each activity.
For volleyball, on an average across 5 sessions, we were able to identify

100% of the users within the first 45s. When we retain the history, we were
able to continue identify 100%of theuserswithin 90s, 135s and 180s of video
duration as well as shown in Figure 6.2.
Formeeting, on an average across 5 sessions, we were able to identify

90% of the users within the first 45s. When we retain the history, we were
able to improve and identify 100% of the users with 90s. For both 135s and
180s duration of video, we continued to identify 100% of the users as shown
in Figure 6.2.
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Figure 6.2: Figure showing the percentage of accurately identified users
in a group of 4 for three activities.

Figure 6.3: Figure showing the percentage of accurately identified users
in a group of 8 for volleyball (top) and poster session (bottom).

For dancing with a group size of 4, we only recorded sessions of 1 min-
utes and 30 seconds. This was done keeping in mind the challenge of 4
dancers being in sync for a longer duration and the fatigue it may cause.
On an average across 5 sessions, we were able to identify 90% of the users
within the first 45s. When we retain the history, we were able to improve
and identify 100% of the users with 90s of data as shown in Figure 6.2.

6.5.3 Group Of 8

Using the same window size, for volleyball, on an average across 5 ses-
sions, we were able to identify 95% of all users within the first 45s. When
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Figure 6.4: Example application of cashier-less checkout. A person walks
into a store, is recognized with their motion of reaching for the bottle on
the top shelf, andwalks out of the store as the purchase automatically gets
charged to their account.

we retain the history, we were able to improve and identify 100% of the
users with 90s of data as shown in Figure 6.3.
For meeting, we only recorded on long poster session to capture the

entire event as if it would happen in the real world. It also allows us to do a
longer analysis. We initially used 8 individuals, but the tracking for one per-
son did not work, so we took out their data leaving a total of 7 individuals.
For the first 45 seconds, only 6 individuals were tracked and we were able
to identify 50% of the users. However, after 90s we were able to identify
71.4% (or 5 out of 7 users) using our approach. We are able to continuously
identify 5 out of 7 users, while retaining the confusion between the other
two for 6minutes and45 seconds. After that, we are able to identify 100%of
the users at all times. Figure 6.3 shows the percentage of users identified
over time.
As stated earlier, due to covid19, we were unable to collect any data for

a group of 8 subjects in the dancing activity.

6.5.4 Example Applications

The ability to identify users in a group in a privacy preserving manner en-
ables several applications. We outline a few of them in this section.
Automatic user identification can be used for cashier-less checkouts in

different stores. Most stores have an app and just a software update would
be required to allow user data to be shared with a camera-based system
in physical stores. An example is shown in Figure 6.4 where a person is
able to pick up an item, their motion is captured- used to recognize their
identity from their smartwatch and the item is directly charged to their ac-
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Figure 6.5: Example application of improved service in a cafe. A person
orders food from their smartphone app. Their motion in the moment is
used to recognize the user and tag the orderwith their location. The server
is then able to bring the food directly to the table without the need to ask
for who order that particular dish.

count. The user simplywalks out of the storewithout having to go through
a cumbersome payment process with a cashier or self-checkout machine.
Similarly, a lot of bars and cafes allowusers to order foodanddrinks from

an app, and the food is delivered to their table. In the current system, the
server typically shouts the name of each customer for identification pur-
poses. However, this process can be automated where the identity of the
user can be shared when they order the food. A little tracking icon tied to
the order number can show up on amap on the server’s iPad. An example
scenario is shown in Figure 6.5. A similar concept can be applied to help
centers such as the Apple store, where one employee typically describes
your outfit and shares it with the other employees via an iPad app. This
cumbersome method of tracking people can be replaced by automatic
identification and tracking of users in real time within a store.
Andperhaps themost obvious use of automatic identificationwould be

to use it for access control in a building. A person sharing their identity in
their work building could be tracked and identified to automatically grant
access (or restrict access) to different parts of the building.

6.6 Discussion And Conclusion

The goal of our work is to identify users in a group in a privacy preserving
manner. We use the motion traces as observed from the camera and the
smartwatch to find similarities and identify users from those signals. The
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fact that smartwatch data is a required part of the system enables a user
with more control over how and when their data is shared. Keeping our
approach in mind, user identification can now be built as a feature similar
to sharing location. When a user walks into an environment, where they
would like to be recognized, they can simply turn on sharing and their IMU
data would be shared with the camera system in place. For example, a
user walks into a gym that provides a service to track their workout. A user
thatwants to leverage this service can turn on their identity sharing just for
their gym and reap the benefits of the automatic workout logging service.
However, if the same user does not feel comfortable sharing their iden-
tity in a mall, they can simply turn sharing off. A simple push of a button
prevents the ambient sensing system alone to recognize users.
In this work, we have demonstrated that we are able to identify users

while they perform different kind of activities with varying degree of mo-
tions and sync in the user’s actions. We were able to identify users in a
group of 2 with 100% accuracy regardless of results in only 45 seconds. In a
group of 4 individuals, we were able to recognize 90% of the users in both
the poster session, and dancing scenario and 100% of the users when they
are playing volleyball. Similarly, for group of 8 individuals, we are able to
identify 96% of the users in only 45 seconds and we are able to identify 5
out of 7 individuals in a poster session after only 90 seconds of activity. Our
results demonstrate that for activities that last longer than a couple ofmin-
utes, a hybrid approach of smartwatches and camera can be both reliable
and privacy preserving in identifying the users.





CHAPTER 7

IMU2DOPPLER: CROSS-MODAL
DOMAIN ADAPTATION FOR
DOPPLER-BASED ACTIVITY
RECOGNITION USING IMU DATA

7.1 Introduction

Researchers anddevelopers often rely on sensors in smartphones [176, 177],
smartwatches [178, 179], cameras [17, 180, 181], and even microphones [182,
183] to infer context, recognizeuser activities, andadapt to theuser’s needs.
Recently, wehave seenmanyactivity recognition systems that rely onDoppler
Effect-based mmWave radars to measure activity movements [184–186].
An advantage of a mmWave radar is its ability to characterize fine-grained
motion. It has the ability to capture micro-motion dynamics of subtle ac-
tivities (e.g., hand activities such as brushing, eating etc.) captured via the
micro-Doppler Effect [187]. A mmWave radar-based activity recognition
system also offers a higher degree of privacy preservation compared to
other popular ambient sensors such as cameras or microphones.

These activity recognition and sensing systems are typically built using
machine learning models that need labeled, in-situ sensor data for train-
ing. These training labels typically rely onmanual annotation or user inter-
vention to segment and label specific activities performed by users. This
process introduces time and resource constraints that impedes our abil-
ity to quickly deploy and use new doppler sensors. Moreover, the ground
truth collection (cameras, user intervention etc.) tends to be intrusive and
may be unsuitable in scenarioswith elevated privacy constraints. Thisdata

79
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collection and labeling cost is one of the biggest challenges of build-
ing any new activity recognition system. These systems need to work well
out-of-the-boxwith no or very-little in-situ calibration. Ideally, themachine
learning models would not need any in-situ training, and ultimately facili-
tate easier deployability.

One method to overcome the challenge of data labeling cost is auto-
mated domain adaptation. Such approaches rely on successful knowl-
edge transfer from labeled data collected in onedomain anduse it to assist
the training of a model in a target domain with no (or limited) data of its
own. Here, one popular approach has been to use videos as the source
domain [127, 128]. Videos provide a rich source of information with a con-
siderable feature space. Moreover, the extensive library of labeled video
datasets make it an attractive choice for a source domain. However, us-
ing videos as the source domain requires the full body of a human to be
visible in the source videos. The approach cannot handle occlusion or par-
tial capture of the body. This limitation significantly reduces the available
video datasets that can be reliably used for domain adaptation.

In this chapter, we present IMU2Doppler and evaluate the use of off-
the-shelf inertial measurement units (IMU) datasets as the source domain
to build an activity recognition model for the mmWave radar sensor. IMU
data does not share the same limitations as videos. The uninhibited sig-
nal that captures the motion performed as a part of the activity is rotation
and environment invariant which makes it a good candidate as a source.
Additionally, IMU retains someof the advantages of videodatasets i.e.,prior
works in activity recognitionhaveextensively collected IMUdata for agamut
of activities and made it publicly available.

We demonstrate that IMU2Dopper can map the doppler data (input
to the untrained ML model) to a latent feature representation of the pre-
trained IMU model. In addition to this representation of the IMU model,
we use minimally labeled (akin to a calibration step) doppler data to clas-
sify 10 activities of daily living. This novel approach allows us to recognize
these activities with an accuracy of 70% with only 15 seconds of labeled
data from the mmWave radar sensor. We acknowledge that this is not
the performance we should expect from a real world system. However,
IMU2Doppler provides an out-of-the-box model that can benefit from a
quick personalization and calibration step. Our contribution lies in facili-
tating rapid development of a ‘good enough’ basemodel that can then be
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usedwithother techniques suchas active learning [188] ormeta-labeling [189]
that personalize to the user’s environment and improve over time without
a need for significant data labeling.
In this work, we also demonstrate that we can combine multiple IMU

datasets recorded in completely different environmentswithdifferentusers
as a unified source of training data. Typically, using multiple sources is a
significant challenge for domain adaptation due to the domain shift that
exists across the sources. Zhao et al. have summarized the numerous
challenges of multi-source domain adaptation [190]. However, we show
that our approach is resilient to such issues. In fact, when we combine the
training data from two IMU datasets, IMU2Doppler demonstrated a small
increase of 1% in recognition performance. From a practical perspective, it
means that not only any publicly shared IMU data can be used, but a user
whowishes to record a completely new activitymay incur a one-time-cost,
use an app on their smartwatch to collect IMU data for that activity, and
personalize the machine learning model. Moreover, if the user chooses to
share their data of this new activity, other users can leverage it to train their
doppler sensor without incurring the same time and resource penalty.

In summary, our contributions are as follows:

1. Anactivity recognition system for 10different activities usingmmWave
radar. Prior work has shown the use of mmWave radar to capture
gross movements. We include and expand the set of activities to in-
clude subtle activities such as brushing teeth, folding laundry etc.

2. A novelmulti-class heterogeneous domain adaptation approach that
learns a feature mapping between inertial sensors worn on a user’s
wrist andammWave radar sensorplaced in theenvironment. Itmeans
that our approach is viewpoint and translation invariant.

3. The domain adaptation approach uses off-the-shelf IMU dataset as
the source domain. It means that the source data was not only col-
lected on different users as the target domain, but also at a different
time. We also show that we can use muliple datasets and combine
them as a single source to achieve the same results.
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7.2 Algorithm

IMU2Doppler is a transfer learning-assisted ambient sensing system that
uses mmWave radar sensors to detect and distinguish between a set of
activities of daily living with minimal labeled data. To account for the lack
of labeled radar data, we implement a multi-objective optimisation tech-
nique that uses domain adaptation. It uses a neural network pre-trained
on inertial measurement data from multiple datasets specifically curated
for the task of activity recognition. Below, we describe our sensing princi-
ple and algorithm in detail.

7.2.1 Sensing Principle

Millimeter-wave (mmWave) radar sensors transmit pulses of electromag-
netic energy and receive reflections when obstructed by rigid targets in
the environment. By exploiting theDoppler Effect, it is possible tomeasure
certain motion characteristics of the target like its relative velocity, angle
of arrival and distance to the radar system. While the Doppler effect arises
from the bulk motion of the target, micro-motion dynamics of the target
or its structure such as vibration, rotation, tumbling and coning motions
induce the micro-Doppler Effect [187]. For instance, in case of a moving
person, the arms and legs act as independent elements in motion [191].
Since the intensity of the micro-Doppler effect is dependent on the veloc-
ity and direction of the motion, individual movements of the target with
discernible motion characteristics produce distinct micro-Doppler signa-
tures, which can be used for human activity recognition [192, 193].
We collect the synthetic aperture radar (SAR) data from the doppler

sensor and used the azimuth-range-doppler algorithm to parse the con-
tinuous data. As shown in Figure 7.1, the images corresponding to different
activities represent distinct patterns. These patterns can be modeled and
recognised by appropriate learning algorithms, as described in the follow-
ing sections.

7.2.2 Knowledge Transfer

Machine learning algorithms showexceptional predictive power in a range
of human activity recognition (HAR) tasks [17, 194–196] but require an abun-
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Figure 7.1: Image showing corresponding doppler and IMU signals for var-
ious activities
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dance of annotated data. Although such labeled data exists for a number
of sensing modalities, the newfound promise of doppler radar sensing is
limited by the lack of a sufficiently large labeled dataset. To solve this prob-
lem, we use transfer learning, specifically domain adaptation, wherein we
can leverage neural networks trained on a sufficiently large dataset of a
different but related modality (source domain) to accelerate the learning
of micro-doppler signatures (target domain).
The accelerometer data captured by a wearable inertial measurement

units (IMU) characterizes similarmotion characteristics as that of a doppler
sensor. It captures an environment and position invariant snapshot of the
motion of humanmovement. We postulate that this characteristic of IMU
makes it a suitable candidate for source domain. Besides heterogeneous
domain adaptation across two different modalities, we also use off-the-
shelf datasets to demonstrate that the same events do not need to be
recorded synchronously for knowledge transfer across differentmodalities.
For knowledge transfer, we propose a supervised, cross-modal domain

adaptation approach that maps the input of the untrained doppler model
to the shared latent feature representation of the pre-trained IMU model.
Further, to preserve the information about the target domain or doppler
data, we adopt multi-task learning to simultaneously minimize the do-
main discrepancy (between the latent representation of the two modal-
ities) along with the classification loss (between the predicted and actual
target label). This multi-objective optimisation ensures that the underly-
ing structure of the target data is retained even in the latent feature sub-
space. The rationale for our approach is rooted in the observation that task-
specific and domain-invariant semantic features can be better associated
with the higher layers (close to the output side) of a network [197]. This ob-
servation allows us to choose different neural architectures that are best
suited for each modality, with the constraint of having identical fully con-
nected layers that are responsible for producing the shared latent feature
representation.

7.2.3 IMU: Data Processing And Neural Architecture

We use the ”WISDM Smartphone and Smartwatch Activity and Biomet-
rics Dataset”[198] for training an activity recognition classifier with inertial
data. The dataset was collected from the accelerometer and gyroscope
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sensors on both the smartwatch and smartphone of a total of 51 users. It
consists of 18 unique activities, ranging frombasic ambulation likewalking
and jogging to other activities of daily living like eating and drinking. For
the purpose of our work, we chose a subset of 10 activities for evaluation, as
listed in Figure 7.1. We chose these activities based on their suitability for
detection with doppler sensor. For example we did not include activities
such as kicking a soccer ball or two other different eating related activi-
ties (sandwich, chips). We also excluded activities that do not include any
motion such as sitting.
The four streams of data, namely phone accelerometer, phone gyro-

scope, watch accelerometer and watch gyroscope, are each recorded at a
sampling rate of 20Hz. For our purposes, we consider only the smartwatch
accelerometer data. We segment the raw watch acceleration data using
a sliding window of size 5 secs and an overlap of 2.5 secs. The extracted
tri-axial frames are reshaped into 3-channel windows with a length of 100
samples (input size: 100× 3) that are ready for classification.

IMU Model Selection

Toassess thediscriminability of theactivities in the sourcedomain, weeval-
uate the performance of a set of deep neural networks including 1D CNN
(5 Convolutional Units, each consisting of a Convolutional layer, a Batch
Normalisation layer and a Max Pooling layer), LSTM (2 LSTM layers, Units:
[128, 256]) and Bidirectional-LSTM (1 Bi-LSTM layer, Units: 256). One fully-
connected layer (Units: 128) and the final output layer were added at the
end of each model. The networks were trained from scratch with Adam
optimizer (Learning Rate: 0.01) coupled with a learning rate decay of 0.1 (to
check for the saturation of validation loss). Weuse theCategorical Crossen-
tropy loss function to optimise the outputs of the final layer, which uses the
Softmax activation to classify activities. We used Keras [199] and Python to
implement and train these models.
We followed a subject-independent scheme for evaluation and split the

dataset into 5 folds of 10 subjects each. Each train-test split resulted in ap-
proximately 28.4K training instances and 7.8K test instances. Table 7.1 pro-
vides the classification performance of all themodels alongwith their total
number of trainable parameters. We found the bidirectional LSTM clas-
sifier to produce the best accuracy owing to the superiority of Recurrent
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Figure 7.2: Training schematic for cross-modal domain adaptation with
IMU data as the souce domain and doppler data as the target domain.

Neural Networks (RNNs) like LSTMs and Bi-LSTMs in modeling long-range
temporal dependencies. Moreover, since a bidirectional-LSTM layer con-
sists of two LSTM layers that operate on the original and reversed copy of
the data in parallel, it preserves the information from both the future and
the past, thus outperforming an LSTM. Hence, for all further experiments,
we use the Bi-LSTM as the neural architecture for the source domain.

Table 7.1: Classification results of different models on a subset of WISDM
Dataset (10 activities)

Model Trainable Parameters Accuracy ± SD

1D CNN 453,002 79.16 ± 3.35
LSTM 496,010 80.67 ± 2.92

Bi-LSTM 169,354 83.34 ± 4.23

7.2.4 End-To-End Learning Algorithm

The pipeline begins with training a Bi-LSTM classifier, MIMU , on the entire
IMU dataset. MIMU acts as the pre-trainedmodel used for domain adapta-
tion. The goal is to train a newmodel,MDoppler, for classifying the limited la-
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beled doppler data. Each doppler sample, XDoppler, is paired with a random
IMU sample,XIMU , having the sameactivity label Y , to form training triplets
of the form (XIMU , XDoppler, Y ). To extract a latent feature representation, we
consider the output of the second-to-last fully connected layer, which has
an identical configuration in both MIMU and MDoppler. Let the sequential
transformation of all the layers before the pre-final layer be denoted by f(.)
and g(.) forMIMU andMDoppler respectively. The learning objective ofMDoppler

is to optimise the weighted sum of the mean-squared error between the
latent representations, i.e. |g(XDoppler)−f(XIMU)|2, and the categorical cross-
entropy loss between the predicted softmax values, Ŷ , and actual label, Y .
Mathematically, we define our objective function L as follows:

L(XIMU , XDoppler, Y ) = α× |g(XDoppler)− f(XIMU)|2 + β ×−
∑

i Y
(i)logŶ (i)

Here, Y (i) and Ŷ (i) denote the value of the ith class in the actual and
predicted one-hot encoded labels respectively. Adam optimiser (Learning
Rate: 0.001), coupled with a learning rate decay of 0.1 (to check for valida-
tion loss saturation) is used to optimise L. Empirically, we found the value
of α = 1.3 and β = 0.7 to produce the best performing classifier. To further
accelerate the learning, we initialise the final layer ofMDoppler with weights
of the corresponding layer in the pre-trainedMIMU . In this way, the knowl-
edge in MIMU , in the form of learned parameter values and input-output
mapping, is effectively transferred toMDoppler. The entire training schematic
is visualised in Figure 7.2.

7.2.5 Doppler: Data Processing And Neural Architec-
ture

We apply the azimuth-range-doppler algorithm on our collected doppler
dataset to get rolling spectrograms consisting of 256 frequency bins and
32 time steps (representing nearly 0.01s of data). We construct sequences
of these spectrograms by using a slidingwindow of 5s with a step size of 1s.
When stacked together, each window consists of 150 (5s × 30 Hz) frames
of 256 × 32 spectrograms (final input size: 150 × 256 × 32).
To compare the results of our domain adaptation approach and deter-

mine the best neural architecture for the target domain, i.e. doppler data,
we trained and evaluated different models chosen from state-of-the-art
deep learning architectures that are generally adapted in a wide range of
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Figure 7.3: We used TI’s AWR1642 Radar sensor for our data collection.

applications. We compared the performance of a 3-layer 2D CNN, a 5-layer
2D CNN, a CNN-LSTM and a CNN-Bi LSTM, on our processed dataset of
spectrogram sequences. Standalone LSTMs and Bi-LSTMs can’t be consid-
ered since the dataset comprises sequences of 2D images, which need to
be condensed into sequences of 1D vectors before they can be processed
by an LSTM layer. For this purpose, we added a CNN encoder before the
first LSTM layer in order to extract the spatial information from each im-
agewhilemodeling the temporal dependencies of a sequence. Thus, both
CNN-LSTM and CNN-Bi LSTM consist of a 3-layer time distributed 2D-CNN,
followedby 2 LSTM layers (Units: [128, 256]) and 2Bi-LSTM layers (Units: [128,
256]) respectively. On the other hand, the 5-layer and 3-layer 2D-CNNs just
consist of 5 and 3 Convolutional Units (convolution layer and amax pooling
layer) respectively. Following the same structure as the IMU model, each
model is connected to a 128-unit fully-connected layer, followedby the out-
put layer with Softmax activation for classification. As shown in Section
7.4.1, the 3-layer 2D-CNN proved to be the optimal neural architecture for
modeling our dataset.

7.3 Data Collection
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7.3.1 Participants And Apparatus

We collected data from 9 participants (6 males, 3 females), ranging in age
from 20-32 (Mean: 26.3, SD: 3.8). The data was collected in a lab space
roughly 5.2 x 6.5 x 2.8 m. We used TI’s AWR1642 doppler radar sensor (Fig-
ure 7.3) to record SAR data at a sampling rate of 30 Hz. The sensor was
placed at a distance of approximately 2m from the participants. All activi-
ties were recorded using a laptop and ground truth was collected with an
accompanying video camera.
All activities except clapping, jogging and walking required additional

apparatus. The foodwaspackaged in the same takeout containers for each
participant. All participantsusedmanual toothbrushes fromthe samebrand.
We provided the participants with a tennis ball and a basketball for the
catching and dribbling tasks. We did not control the apparatus for drink-
ing and folding clothes. The participants were given different sized cups
out of convenience; and the participants typically folded their own clothes
(e.g. jackets).

7.3.2 Experimental Design And Protocol

Before beginning the data collection, the researcher introduced the pro-
tocol and briefed the participants about the activities. We conducted an
extensive within-subject study in which we recorded 1500s of data (10 ac-
tivities × 150 seconds) from each participant. For each activity, we divided
the recording into 10 sessions of 15s each.

7.4 Results

In this section, we evaluate the performance of the proposed cross-modal
domain adaptation approach via extensive experiments on our collected
dataset comprising 10 different subjects.

7.4.1 Doppler Model Selection/Baselines

We consider a subset of the doppler data, consisting of three subjects, for
determining an appropriate baseline. We built three per-user classifiers,
one for each subject, for each type of model using a leave-n-sessions-out
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Table 7.2: Baseline Results for different models across 10 activities and 3
subjects

Model Input Size Trainable Parameters Accuracy ± SD

3-Layer 2D CNN N × 256× 32× 150 11,154,922 76.55 ± 5.25
5-Layer 2D CNN N × 256× 32× 150 15,874,538 68.12 ± 0.01
CNN-LSTM N × 150× 256× 32× 1 4,765,504 52.57 ± 3.01
CNN-Bi LSTM N × 150× 256× 32× 1 9,698,624 53.94 ± 22.53

scheme (n = 9). Here, in each fold, we train themodel on one session of data
(training set), calibrate the hyperparameters on another session (validation
set) and evaluate the performance on the remaining eight sessions (test
set). Thus, for this experiment, we obtain a total of 110 training instances
(10 activities × 1 session × 11 instances/session; each session is 15s long per
activity), 110 validation instances and 880 test instances. Table 7.2 summa-
rizes the classification accuracies of all models, the number of associated
trainable parameters and the required shape of the input data. Despite
the limited training data, the 3-layer CNN produces an accuracy of 76.55%,
thereby outperforming the rest. In fact, we can generalise that for our
task, CNNs perform significantly better than the CRNNs (Convolutional-
Recurrent Neural Networks; CNN-LSTM and CNN-Bi LSTM). The superiority
of CNNs can be attributed to the way in which the input data is modeled
by the two architectures. While both use convolutional layers as feature
extractors, the CNNs interpret the entire sequence as a multi-channel im-
age (stacked spectrograms), unlike the CRNNs, which treat each frame of
the sequence individually before fusing the extracted features and passing
them through an LSTM. The former allows a more comprehensive repre-
sentation of the sequence by systematically organizing the temporal infor-
mation as spatial neighbours. The latter, on the other hand, diminishes the
local intra-frame temporal dependencies. Lastly, additional convolutional
layers in the 5 layer network make the model unnecessarily complex for a
small dataset, thus leading to overfitting. Therefore, we find a 3-layer CNN
to be themost suitable for effectivelymodeling doppler spectrograms. We
deploy our domain adaptation approach on the same to compare against
the best-performing baseline.
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Figure 7.4: Per-user comparison of our approach and the baseline under
two labeled data distributions consisting of 5s and 10s of training data per
class respectively, combined with 5s of validation data per class. The error
bar indicates the variation (Standard Deviation) across different folds.
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7.4.2 Domain Adaptation Results

Finally, weevaluate theperformanceof ourproposedapproachunder vary-
ing conditions. We primarily vary the amount of labeled data used in the
learning procedure with the objective of navigating the tradeoff between
minimizing the amount of annotated data learned by the model and in-
creasing the resultant performance. Starting from 10 seconds of data per
class, we examine different sizes of annotated data up to 30 seconds. With
increments of 5s, we obtain a total of 5 durations: 10s, 15s (or 14s), 20s, 25s,
and 30s. Each of these durations entail different combinations of training
and validation size (see Table 7.3), represented by (T, V), where T denotes
the training size per activity (in seconds) and V denotes the validation size
per activity (in seconds). For instance, a model can be exposed to 20s of
labeled data in twoways: (15s, 5s) or (10s, 10s). Further, if an entire session is
not consumed in the training or validation set, we discard the remainder to
prevent information leakage. This ensures that no twowindows belonging
to the same session are present in two different sets.

We adopt a leave-n-sessions-out scheme to train the models, where n
represents the number of sessions that are not a part of the training set.
n can take different values depending on the size of the training set. For
example, if we consider a training size that is greater than the session size
(15s), say 20s, we will require 2 sessions for training. This leaves us with 1
session for validation and 7 sessions for the test set (n = 8), thus leading
to a total of 10C8 combinations of train-validation-test sets. On the other
hand, with a training size of 10s, one session would suffice for training (n =
9) and we’ll obtain 10C9 train-validation-test sets. Each set was trained for a
maximum of 500 epochs with Adam optimizer (Learning Rate: 0.01) cou-
pled with a learning rate decay of 0.1 and early stopping on the validation
set with a patience of 100. The average of the results across 10Cn runs is
reported for each (T, V) configuration.

Augmentation: Different (T, V) configurations imply varying numbers
of training and validation instances. After following the window segmen-
tation procedure described in Section 7.2.5, we obtain 1, 3, 6, 11, 12, and 17
instances from a total of 5s, 7s, 10s, 15s, 20s, and 25s of data respectively.
To account for the limited training samples in case of (5s, 5s) and (7s, 7s),
we augment the doppler dataset by pairing each doppler sample with
three IMU samples in order to get three training triplets, (XDoppler, XIMU_a, Y ),
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Table 7.3: Classification accuracy of our proposed domain adaptation ap-
proach and baseline for different amounts of training and validation data,
averaged across 10 subjects.

Amount of
Labeled Data

Configuration
(Training size, Validation size)

Accuracy of
Our Approach (in %)

Accuracy of
Baseline (in %)

10s (5s, 5s) 59.36 48.61

15s (7s, 7s) 70.00 64.16
(10s, 5s) 68.18 59.81

20s (10s, 10s) 72.68 68.01
(15s, 5s) 71.80 66.67

25s (15s, 10s) 74.58 70.03
(20s, 5s) 74.46 69.28

30s (15s, 15s) 75.68 72.55
(20s, 10s) 77.15 73.18

(XDoppler, XIMU_b, Y ), and (XDoppler, XIMU_c, Y ). As a result, we have 3 and 9 in-
stances per activity for (5s, 5s) and (7s, 7s) respectively.

Table 7.3 summarizes the domain adaptation results for different (T, V)
configurations and their corresponding baseline results. It shows convinc-
ing evidence thatmicro-doppler based human activity classifiers can learn
from the knowledge of a pre-trained IMUmodel. All configurations show a
jump of at least 3% from the baseline, with maximum difference observed
in the lower training and validation sizes. The (5s, 5s), (7s, 7s) and (10s, 5s)
configurations show an improvement of approximately 10%, 6% and 9%
over the baseline respectively. A deeper look at the classifiability of indi-
vidual activities for the (10s, 5s) configuration (see Figure 7.5) shows that
our model confuses between classes like eating soup, eating pasta and
drinking. These activities can be broadly represented by a similar hand-
to-mouth gesture, thus showing limited distinction in the source domain
as well. In the course of knowledge transfer, these inherently similar mo-
tion characteristics transfer from the source to the target domain and con-
sequently translate into the observed confusion. Nevertheless, this result
is quite encouraging as the difference in recognition performance of our
proposed approach from thebaseline is considerable in spite of thehetero-
geneity of the source and target domains. As anticipated, the classification
accuracy increases with an increase in the amount of annotated data used
for training. The classifier trained on 20s and validated on 10s of data per
activity produces the best average accuracy of 77.15% (max participant ac-
curacy: 85.47%), highlighting the role of proportionately distributing our
minimally labeled data into training and validation.
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Figure 7.5: Confusionmatrix for a 3-layer 2D CNN trained with 10s of train-
ing and 5s of validation data. The figure represents the combined results
of all participants.

The results of these experiments substantially support the feasibility
andeffectiveness of theproposed superviseddomainadaptationapproach.
Demonstrated over a range of locomotion and other complex daily activi-
ties, domain transformedmicro-doppler representations are seen tobetter
capturemotion information in comparisonwith theoriginalmicro-doppler
spectrograms.

7.4.3 DomainAdaptationUsingMultipleDatasetsCom-
bined As A Single Source

Althoughour approach relies on the transfer of higher-level domain-invariant
features, weverify the samebydistilling information frommultipledatasets
combined into a single source domain. We constructed a new IMUdataset
by replacing the data of two activities in our current dataset, namelywalk-
ing and jogging, by corresponding samples drawn from the Wearable Ac-
tivity Recognition Dataset (WARD) [200]. WARD consists of sequences of
13 human actions (including walking and jogging) collected from 20 par-
ticipants by a network of 5 sensors placed at different body positions (in-
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Figure 7.6: Per-user comparison of baseline and proposed domain adap-
tation approach with a heterogeneous source domain comprising of two
datasets. The training and validation data contain 15s of labeled data per
class (10s, 5s). The error bar indicates the variation (Standard Deviation)
across different folds.

cluding thewrist), each carrying a triaxial accelerometer and a biaxial gyro-
scope. In order to maintain class balance in the proposed dataset, we ran-
domly selected 20 participants fromour current dataset before combining
it with the wrist accelerometer data fromWARD. Due to the inconsistency
in the sensor specifications, participants andother external factors, wenor-
malised themixed dataset as awhole to account for the incompatible data
distributions across activities from the two datasets.

We trained a Bidirectional LSTM, which proved to be the best classi-
fier for IMU data, from scratch for the mixed dataset. Adopting the same
training procedure as followed in Section 7.2.3, we achieved an accuracy of
80.36%, which is at par with the results for a homogeneous IMU dataset.
Using this model for extracting learned latent feature representations, we
evaluated theperformanceof ourdomainadaptationapproachwith a train-
ing and validation size of 10s and 5s, respectively. With an average per-
user accuracy of 69.37% (see Figure 7.6), the results not only indicate in-
variance to heterogeneity in the source domain but also show a marginal
increase in comparison to the previous results together with a high accu-
racy/classifiability for the classes belonging to the minority dataset (walk-
ing, jogging). Thus, the results of this experiment highlight the potential of
leveraging the sizeable collection of IMU datasets that cover a multitude
of human actions, to build amore comprehensive human activity classifier
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for doppler data.

7.5 Limitations And Discussion

In this section, we discuss some key limitations of our work and reflect on
how itmay impact the usability and deployability of our approach. We also
discuss how our work may contribute to future research directions.

7.5.1 Classifier Accuracy For Real World Use

Our work demonstrates success in domain adaptation and is able to out-
perform the baseline consistently. However, even with 30 seconds of la-
beled data, our approach is able to classify these 10 activities with an accu-
racy of 77.15% (compared to 73.18% with baseline). We acknowledge that
this is not sufficient for a system to be deployed in the real world. How-
ever, we believe that our approach can be used in combination with other
strategies such asmeta-labeling [189] and active learning [188] designed to
improve the classifier accuracy and robustness over time. Suchapproaches
typically require a ‘good enough’ base model that can be used to make
initial, out-of-the-box predictions. However, building that base model is
also not easy without significant labeled data. Our approach can assist in
rapidly building these base models to facilitate these techniques that can
learn and improve over time without introducing significant data labeling
cost.

7.5.2 Limited Activities In Source Domain

Ourwork shows thatwe can use existing off-the-shelf IMUdatasets to train
a mmWave radar sensor. While our approach is robust, the multi-task
learning method can only be leveraged to train the mmWave radar with
activities that are distinctively recognizable in the source domain. Our ap-
proach only helps augment the training process for the activities that IMU
can reliably characterize. Our solution is not a catch-all and despite this
limitation, a vast body of prior IMU work means that our approach can
be a catalyst to improve deployability of mmWave radar sensor for activity
recognition. In fact, our work can potentially leverage prior work to con-
vert the extensive video datasets into virtual IMU streams [201] and then
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use those virtual IMU streams to train the doppler sensor to recognize a
wide gamut of activities.

7.5.3 Controlled Environment For User Study

Despite promising results, one key limitation of our work is that the study
was conducted in a controlled environment. The users were free to per-
form the actions/activities as they normally would but they were recorded
in a largely static environment. There were no other motions except the
primary user in the field of view of the mmWave radar sensor. The source
domain (IMU) is impervious to this challenge, but the doppler sensor cap-
tures a wide range ofmotions in the environment. This limitation needs to
be overcome before our work can be deployed widely. Fortunately, newer
doppler radar sensors are bundled with person tracking algorithms 1 that
can be leveraged to sample the doppler from the primary user. Secondly,
ourwork can still beused in scenarioswhereonly a singleuserwith (mostly)
static background would be expected. For example, a small office, single-
owned apartment or a home gym.

7.6 Conclusion

A fundamental challenge of scaling up any machine-learning system, es-
pecially activity recognition systems has been collecting and labeling the
data required to train amodel. Every few years there is a new sensor in the
market that shows promise either due to the signal it is able to capture
or advancements in the software and compute capabilities (e.g., surge of
computer vision in recent years). In this paper, we tackle the challenge of
data collection and labeling with the new and promising mmWave radar
sensor. We showcase that we can use existing IMU datasets to learn a la-
tent feature representation that can be used by themmWave radar sensor
to classify between 10 activities with minimal data labeling of its own data
(10 seconds).
Our approachnot onlydemonstrates successful heterogeneousdomain

adaptation, but importantly also works with off-the-shelf datasets. From a
real world perspective, it means that not only existing IMU datasets can
be used to train the mmWave radar sensor, we can catalogue and label

1https://www.ti.com/tool/TIDEP-01000
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a library of activities recorded using IMU-ladden smartwatches which can
be then be used to train sensors such as the mmWave radar. This is an
improvement over simply collecting and labeling doppler data because:
(1) mmWave radar sensors are not widely adopted or used which makes it
hard to do a large data collection; and (2) it is harder to collect the ground
truth required for doppler data as itwouldpotentially require cameras (and
video coders) or dedicated user time in front of the doppler for direct label-
ing. On the other hand, smartwatches are popular with a large user base
and they have the capability to passively sense, record and label activities
with minimal user disruption.



CHAPTER 8

CONCLUSION

The thesis startedwith a lofty goal of tackling four different challenges that
inhibit a practical privacy-preserving system.

First I conducted a large scale study to understand how different cam-
era based sensing systems impact a user’s privacy preferences. I demon-
strate that just the mere fact that a user is aware of how a camera-based
systemprocesses the data being collected instillsmore trust in the system.
I also show variance in trust depending on the technique being used with
optical flow and pose detection being considered the most trustworthy.

I build upon my results and use these privacy preserving sensing tech-
niques to solve the next two big challenges: (1) building robust and accu-
rate activity recognition techniques using ambient sensors; and (2) user
identification in a shared space.

In GymCam [17], I built a vision-based system that uses off-the-shelf
cameras to automate exercise tracking and provide high-fidelity analytics,
such as repetition count, without anyuser or environment-specific training
or intervention. To develop and evaluate ourmachine learning algorithms,
we collected data in our university’s gym for five days. It was a first of its
kind unconstrained evaluation of a fitness tracking system. In our dataset,
therewere several instanceswhere 25 users were tracked at the same time
using GymCam. It is a practical sensing system that is resilient to chal-
lenges seen in a real gym. In our dataset, there were several instances
where multiple users were tracked at the same time using GymCam. A
challenge with applications that sense or track activities at scale such as
GymCam is how to identify each user in the space. The ability to identify
users in a shared space is crucial to enable applications and products that
can passively sense different activities, offer personalized service, and pro-
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vide feedback to the user. In MotionID [18], I built a user identification ap-
proach that uses a lightweight machine learning model to couple motion
profiles from a regular RGB camera and a smartwatch worn by the user.
This reliance of this hybrid approach on the smartwatch makes user iden-
tification a feature similar to location sharing that can be enabled/disabled
by the user depending on their privacy preferences in any environment. I
evaluated my approach in different group sizes (2, 4, and 8) across three
different activities (poster session, playing sports, and coordinated danc-
ing). Besides collecting data in a natural setting, these activities allowed
me to evaluateMotionIDwith a gamut ofmotions ranging from tinymove-
ments in poster sessions to large displacements in team sports. To further
validate its robustness, I also evaluated MotionID in coordinated dancing
where the observed difference between user movements is miniscule.
The last grand challenge outlined at the start of this thesis was the need

for labeled data to build a robust sensing system such as the ones de-
scribed above. In my thesis work, I tackle the challenge of data collec-
tion and labeling with the new and promising mmWave radar sensor. I
showcase that we can use existing IMU datasets to learn a latent feature
representation that can be used by the mmWave radar sensor to classify
between 10 activities with minimal data labeling of its own data (10 sec-
onds). My approach not only demonstrates successful heterogeneous do-
main adaptation, but importantly also works with off-the-shelf datasets.
In summary, the key to my research has been making sensing and in-

teraction practical. I will further my agenda to make deployable AI and
sensing platforms, particularly on edge devices. My work is inherently in-
terdisciplinary and offers opportunities to collaborate with other machine
learning experts, industrial designers, privacy gurus and other domain-
specific specialists. Here are some future directions that spawn from my
thesis work.

8.1 Future Work

In the future, I plan to build upon my research and expand it to other ap-
plication domains. I have previously explored ambient sensing opportu-
nities in fitness and sports, but I am eager to solve high-impact problems
in other domains and shared spaces such as airports, factories, and evens
entire neighborhoods. Simultaneously, I want to expand sensing for the
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individual to domains such as accessibility, privacy and education where
individual agency and ownership is of paramount importance. Here I out-
line some research avenues that I am excited to explore:

8.1.1 Improving Privacy Control Of Sensing Systems:

Privacy management is a huge concern with sensing systems, especially
in shared user spaces. Ambient sensors in such environments like cam-
eras tend to be privacy invasive. My thesis work addresses some of these
concerns byusingprivacy-by-design techniques for featurizing the raw im-
age data and providing user control over who gets access to their identity.
However, these do not completelymitigate all privacy concerns a usermay
have. The limited control of a user over such sensors that capture a high
amount of sensitive information in a foreign environment leads to privacy
concerns. These ambient systems have the same privacy policy for every-
one in the shared space. I want to explore methods to enable each user
with individualistic control over their privacy. For example, if Alice does not
want to be tracked through the mall, they should be able to opt out but if
Bob wants to be tracked to leverage personalized recommendations, they
should also be able to do so in the same shared space.

8.1.2 Data LabelingTechniquesForBuildingDeployable
Systems:

IMU2Doppler has shownpromise of usingdomain adaptation to teach am-
bient sensors how to recognize activities with minimally labeled data. We
can take this work a step further and address some of the limitations of
the current work. One avenue would be to examine a range of ambient
sensors that can learn from a translation invariant IMU dataset. Another
research avenue that I wish to pursue in this domain is to explore other
new approaches such as active learning that can leverage IMU2Doppler
and then be used to deploy a practical system. Efforts in this space have
largely been concentrated on specific adaptations due to the high degree
of complexity; however, if onewere towork towards the grand challenge of
making domain adaptation more accessible to a developer, that may not
only propel this space forward, but also lead to curbing data labeling as a
challenge in machine learning.
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8.1.3 Practical & Robust Evaluation Systems

A key component of this thesis was implementing unconstrained evalu-
ation protocols to determine the robustness and practicality of our work.
While these protocols were carefully designed to capture realistic data, be-
sides measuring accuracy/precision, there is no feedback loop built into
the system to tell the developer that the data is not representative. In fact,
there are even no metrics that capture this underspecificity of data. This
area is in its nascent stages, however determining the rightmetrics to cap-
ture the underspecificity and providing useful feedback to the developer
for data collectionhas thepotential to impact howwebuildmachine learn-
ing systems in the future.



BIBLIOGRAPHY

[1] A. C. Clarke. Profiles of the Future, rev. ed, (1973).

[2] K. I. Withanage, I. Lee, R. Brinkworth, S. Mackintosh, and D. Thewlis,
Fall recovery subactivity recognitionwith rgb-d cameras, IEEE trans-
actions on industrial informatics 12, 2312–2320 (2016).

[3] C. A. Ronao and S.-B. Cho, Human activity recognition with smart-
phone sensors using deep learning neural networks, Expert systems
with applications 59, 235–244 (2016).

[4] R. Khurana and M. Goel. Eyes on the Road: Detecting Phone Usage
by Drivers Using On-Device Cameras. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, pages 1–
11, (2020).

[5] Z. Chen, M. Lin, F. Chen, N. D. Lane, G. Cardone, R.Wang, T. Li, Y. Chen,
T. Choudhury, and A. T. Campbell. Unobtrusive sleep monitoring us-
ing smartphones. In 2013 7th International Conference on Pervasive
Computing Technologies for Healthcare andWorkshops, pages 145–
152. IEEE, (2013).

[6] S. Arora, V. Venkataraman, A. Zhan, S. Donohue, K. M. Biglan, E. R.
Dorsey, and M. A. Little, Detecting and monitoring the symptoms of
Parkinson’s disease using smartphones: a pilot study, Parkinsonism
& related disorders 21, 650–653 (2015).

[7] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: rich moni-
toring of road and traffic conditions using mobile smartphones. In
Proceedings of the 6th ACM conference on Embedded network sen-
sor systems, pages 323–336, (2008).

[8] D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele, Participatory

103



104 Bibliography

air pollution monitoring using smartphones, Mobile Sensing 1, 1–5
(2012).

[9] A. Bedri, D. Li, R. Khurana, K. Bhuwalka, and M. Goel. FitByte: Au-
tomatic Diet Monitoring in Unconstrained Situations Using Multi-
modal Sensing on Eyeglasses. In Proceedings of the 2020 CHI Con-
ference onHumanFactors inComputing Systems, pages 1–12, (2020).

[10] G. M.Weiss, J. L. Timko, C. M. Gallagher, K. Yoneda, and A. J. Schreiber.
Smartwatch-based activity recognition: A machine learning ap-
proach. In 2016 IEEE-EMBS International Conference on Biomedical
and Health Informatics (BHI), pages 426–429. IEEE, (2016).

[11] R. Khurana, The past, the present, and the future of fitness tracking,
XRDS: Crossroads, The ACMMagazine for Students 25, 30–33 (2019).

[12] D. Morris, T. S. Saponas, A. Guillory, and I. Kelner. RecoFit: using a
wearable sensor to find, recognize, and count repetitive exercises. In
Proceedings of the 32nd annual ACM conference on Human factors
in computing systems, pages 3225–3234. ACM, (2014).

[13] Y. Lee andM. Song,Usinga smartwatch to detect stereotypedmove-
ments in children with developmental disabilities, IEEE Access 5,
5506–5514 (2017).

[14] M. Shoaib, H. Scholten, P. J. Havinga, and O. D. Incel. A hierarchical
lazy smokingdetectionalgorithmusing smartwatch sensors. In 2016
IEEE 18th International Conference on e-Health Networking, Appli-
cations and Services (Healthcom), pages 1–6. IEEE, (2016).

[15] R. McNaney, J. Vines, D. Roggen, M. Balaam, P. Zhang, I. Poliakov, and
P. Olivier. Exploring the acceptability of google glass as an everyday
assistive device for people with parkinson’s. In Proceedings of the
sigchi conference on human factors in computing systems, pages
2551–2554, (2014).

[16] W.Glauser,Doctors amongearly adopters of GoogleGlass, Canadian
Medical Association. Journal 185, 1385 (2013).

[17] R. Khurana, K. Ahuja, Z. Yu, J. Mankoff, C. Harrison, and M. Goel, Gym-
Cam: Detecting, recognizing and tracking simultaneous exercises



105

in unconstrained scenes, Proceedings of the ACMon Interactive, Mo-
bile, Wearable and Ubiquitous Technologies 2, 1–17 (2018).

[18] R. Khurana, C. Dugue, Z. Yu, J. Ramos, and M. Goel, MotionID: Using
Camera and Smartwatch Motions to Recognize Users in a Group,
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiq-
uitous Technologies 2, 1–17 (2020).

[19] I. D. Addo, S. I. Ahamed, S. S. Yau, and A. Buduru. A reference archi-
tecture for improving security and privacy in internet of things ap-
plications. In 2014 IEEE International conference onmobile services,
pages 108–115. IEEE, (2014).

[20] H. Lee andA. Kobsa.Understandinguser privacy in Internet of Things
environments. In 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), pages 407–412. IEEE, (2016).

[21] H. Lee and A. Kobsa. Privacy preference modeling and prediction
in a simulated campuswide IoT environment. In 2017 IEEE Inter-
national Conference onPervasive Computing andCommunications
(PerCom), pages 276–285. IEEE, (2017).

[22] S. Lederer, J. Mankoff, and A. K. Dey.Whowants to knowwhatwhen?
privacy preference determinants in ubiquitous computing. InCHI’03
extended abstracts on Human factors in computing systems, pages
724–725, (2003).

[23] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster, User percep-
tions of smart home IoT privacy, Proceedings of the ACMonHuman-
Computer Interaction 2, 1–20 (2018).

[24] E. K. Choe, S. Consolvo, J. Jung, B. Harrison, and J. A. Kientz. Living in
a glass house: a survey of privatemoments in the home. InProceed-
ings of the 13th international conference on Ubiquitous computing,
pages 41–44, (2011).

[25] E. McReynolds, S. Hubbard, T. Lau, A. Saraf, M. Cakmak, and F. Roes-
ner. Toys that listen: A study of parents, children, and internet-
connected toys. In Proceedings of the 2017 CHI Conference on Hu-
man Factors in Computing Systems, pages 5197–5207, (2017).



106 Bibliography

[26] P. Worthy, B. Matthews, and S. Viller. Trust me: doubts and concerns
living with the Internet of Things. In Proceedings of the 2016 ACM
Conference onDesigning Interactive Systems, pages 427–434, (2016).

[27] P. E. Naeini, S. Bhagavatula, H. Habib, M. Degeling, L. Bauer, L. F.
Cranor, and N. Sadeh. Privacy expectations and preferences in an
IoT world. In Thirteenth Symposium on Usable Privacy and Security
({SOUPS} 2017), pages 399–412, (2017).

[28] N. Apthorpe, Y. Shvartzshnaider, A. Mathur, D. Reisman, andN. Feam-
ster,Discovering smart home internet of things privacy norms using
contextual integrity, Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2, 1–23 (2018).

[29] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley, M. Prabaker, and J. Rao,
Understanding and capturing people’s privacy policies in a mobile
social networking application, Personal and Ubiquitous Computing
13, 401–412 (2009).

[30] J. Y. Tsai, P. Kelley, P. Drielsma, L. F. Cranor, J. Hong, and N. Sadeh.
Who’s viewed you? The impact of feedback in a mobile location-
sharing application. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 2003–2012, (2009).

[31] G. Khan, Z. Tariq, and M. U. G. Khan. Multi-Person Tracking Based
on Faster R-CNN and Deep Appearance Features. In Visual Object
Tracking in the Deep Neural Networks Era. IntechOpen, (2019).

[32] A. Nunez-Marcos, G. Azkune, and I. Arganda-Carreras, Vision-based
fall detection with convolutional neural networks, Wireless commu-
nications and mobile computing 2017 (2017).

[33] I. Ar and Y. S. Akgul, A computerized recognition system for the
home-based physiotherapy exercises using an RGBD camera, IEEE
Transactions on Neural Systems and Rehabilitation Engineering 22,
1160–1171 (2014).

[34] D. Antón, A. Goñi, A. Illarramendi, et al., Exercise recognition for
Kinect-based telerehabilitation, Methods Inf Med 54 (2015).



107

[35] W.-H. Liao and C.-M. Yang. Video-based activity andmovement pat-
tern analysis in overnight sleep studies. In 2008 19th International
Conference on Pattern Recognition, pages 1–4. IEEE, (2008).

[36] D. Falie and M. Ichim. Sleep monitoring and sleep apnea event de-
tection using a 3D camera. In 2010 8th International Conference on
Communications, pages 177–180. IEEE, (2010).

[37] C. R. Dreher, M. Wächter, and T. Asfour, Learning Object-Action Rela-
tions fromBimanualHumanDemonstrationUsingGraphNetworks,
IEEE Robotics and Automation Letters 5, 187–194 (2019).

[38] J. Wu, L. Wang, L. Wang, J. Guo, and G. Wu. Learning actor relation
graphs for group activity recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
9964–9974, (2019).

[39] Y. Bo, Y. Lu, and W. He. Few-Shot Learning of Video Action Recogni-
tion Only Based on Video Contents. In The IEEE Winter Conference
on Applications of Computer Vision, pages 595–604, (2020).

[40] S. Kumar Dwivedi, V. Gupta, R. Mitra, S. Ahmed, and A. Jain. Proto-
GAN: Towards Few Shot Learning for Action Recognition. In Pro-
ceedings of the IEEE International Conference on Computer Vision
Workshops, pages 0–0, (2019).

[41] C. Careaga, B. Hutchinson, N. Hodas, and L. Phillips. Metric-Based
Few-Shot Learning for Video Action Recognition. (2019).

[42] H. Zhang, L. Zhang, X. Qi, H. Li, P. H. Torr, and P. Koniusz. Few-shot
Action Recognition via Improved Attention with Self-supervision.
(2020).

[43] Y. Gu, W. Sheng, C. Crick, and Y. Ou, Automated assembly skill
acquisition and implementation through human demonstration,
Robotics and Autonomous Systems 99, 1–16 (2018).

[44] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 779–788,
(2016).



108 Bibliography

[45] K. Kim, A. Jalal, and M. Mahmood, Vision-Based Human Activity
Recognition System Using Depth Silhouettes: A Smart Home Sys-
tem for Monitoring the Residents, Journal of Electrical Engineering
& Technology 14, 2567–2573 (2019).

[46] L. Liu, L. Shao, X. Zhen, and X. Li, Learningdiscriminative key poses for
action recognition, IEEE transactions on cybernetics 43, 1860–1870
(2013).

[47] A. A. Chaaraoui, P. Climent-Pérez, and F. Flórez-Revuelta, Silhouette-
based human action recognition using sequences of key poses, Pat-
tern Recognition Letters 34, 1799–1807 (2013).

[48] R. Vemulapalli, F. Arrate, andR. Chellappa.Humanaction recognition
by representing 3d skeletons as points in a lie group. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 588–595, (2014).

[49] A. Jalal, S. Kamal, and D. Kim, A Depth Video-based Human Detec-
tion and Activity Recognition using Multi-features and Embedded
Hidden Markov Models for Health Care Monitoring Systems., Inter-
national Journal of Interactive Multimedia & Artificial Intelligence 4
(2017).

[50] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d
pose estimation using part affinity fields. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
7291–7299, (2017).

[51] J. Li, W. Su, and Z. Wang. Simple Pose: Rethinking and Improving a
Bottom-up Approach for Multi-Person Pose Estimation. (2019).

[52] X. Liu, P. Ghosh, O. Ulutan, B. Manjunath, K. Chan, and R. Govindan.
Caesar: cross-camera complex activity recognition. In Proceedings
of the 17th Conference on Embedded Networked Sensor Systems,
pages 232–244, (2019).

[53] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classification with convolutional neural net-
works. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 1725–1732, (2014).



109

[54] N. Almaadeed, O. Elharrouss, S. Al-Maadeed, A. Bouridane, and
A. Beghdadi. Anovel approach for robustmulti humanactiondetec-
tion and recognition based on 3-dimentional convolutional neural
networks. (2019).

[55] A. Tejero-de Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna, and
E. Rahtu, Summarization of user-generated sports video by using
deep action recognition features, IEEE Transactions on Multimedia
20, 2000–2011 (2018).

[56] F. Luo, S. Poslad, and E. Bodanese. Temporal convolutional networks
for multi-person activity recognition using a 2D LIDAR. IEEE, (2020).

[57] D. Avrahami, M. Patel, Y. Yamaura, S. Kratz, and M. Cooper, Unobtru-
sive Activity Recognition and Position Estimation for Work Surfaces
Using RF-Radar Sensing, ACM Transactions on Interactive Intelligent
Systems (TiiS) 10, 1–28 (2019).

[58] C. Ding, H. Hong, Y. Zou, H. Chu, X. Zhu, F. Fioranelli, J. Le Kernec, and
C. Li, Continuous humanmotion recognition with a dynamic range-
Doppler trajectorymethodbasedonFMCWradar, IEEETransactions
on Geoscience and Remote Sensing 57, 6821–6831 (2019).

[59] J. Wu, C. Harrison, J. P. Bigham, and G. Laput. Automated Class Dis-
covery and One-Shot Interactions for Acoustic Activity Recognition.
In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, pages 1–14, (2020).

[60] N. Roy, A. Misra, and D. Cook, Ambient and smartphone sensor
assisted ADL recognition in multi-inhabitant smart environments,
Journal of ambient intelligence and humanized computing 7, 1–19
(2016).

[61] D. Singh, E. Merdivan, I. Psychoula, J. Kropf, S. Hanke, M. Geist, and
A. Holzinger. Human activity recognition using recurrent neural
networks. In International Cross-Domain Conference for Machine
LearningandKnowledgeExtraction, pages 267–274. Springer, (2017).

[62] A. De Paola, P. Ferraro, S. Gaglio, and G. L. Re. Context-awareness
for multi-sensor data fusion in smart environments. In Conference



110 Bibliography

of the Italian Association for Artificial Intelligence, pages 377–391.
Springer, (2016).

[63] L. Lu, C. Qing-Ling, and Z. Yi-Ju, Activity recognition in smart homes,
Multimedia Tools and Applications 76, 24203–24220 (2017).

[64] W.Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu,Device-free human
activity recognition using commercial WiFi devices, IEEE Journal on
Selected Areas in Communications 35, 1118–1131 (2017).

[65] S. Liu, Y. Zhao, F. Xue, B. Chen, andX. Chen.DeepCount: Crowdcount-
ing with WiFi via deep learning. (2019).

[66] S. Arshad, C. Feng, R. Yu, and Y. Liu. Leveraging transfer learning in
multiple human activity recognition using WiFi signal. In 2019 IEEE
20th International Symposium on” A World of Wireless, Mobile and
Multimedia Networks”(WoWMoM), pages 1–10. IEEE, (2019).

[67] J. Fogarty, C. Au, and S. E. Hudson. Sensing from the basement: a
feasibility study of unobtrusive and low-cost home activity recogni-
tion. In Proceedings of the 19th annual ACM symposium on User
interface software and technology, pages 91–100, (2006).

[68] J. E. Froehlich, E. Larson, T. Campbell, C. Haggerty, J. Fogarty, and S. N.
Patel. HydroSense: infrastructure-mediated single-point sensing of
whole-home water activity. In Proceedings of the 11th international
conference on Ubiquitous computing, pages 235–244, (2009).

[69] J. Froehlich, E. Larson, E. Saba, T. Campbell, L. Atlas, J. Fogarty, and
S. Patel. A longitudinal study of pressure sensing to infer real-world
water usage events in the home. In International conference on per-
vasive computing, pages 50–69. Springer, (2011).

[70] T. Campbell, E. Larson, G. Cohn, J. Froehlich, R. Alcaide, and S. N. Patel.
WATTR: Amethod for self-poweredwireless sensing of water activity
in the home. In Proceedings of the 12th ACM international confer-
ence on Ubiquitous computing, pages 169–172, (2010).

[71] S. N. Patel, M. S. Reynolds, and G. D. Abowd. Detecting humanmove-
ment by differential air pressure sensing in HVAC system ductwork:
An exploration in infrastructure mediated sensing. In International
Conference on Pervasive Computing, pages 1–18. Springer, (2008).



111

[72] S. N. Patel, K. N. Truong, and G. D. Abowd. Powerline positioning: A
practical sub-room-level indoor location system for domestic use. In
International Conference on Ubiquitous Computing, pages 441–458.
Springer, (2006).

[73] G. Cohn, E. Stuntebeck, J. Pandey, B. Otis, G. D. Abowd, and S. N. Patel.
SNUPI: sensor nodes utilizing powerline infrastructure. In Proceed-
ings of the 12th ACM international conference on Ubiquitous com-
puting, pages 159–168, (2010).

[74] S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds, and G. D. Abowd.
At the flick of a switch: Detecting and classifying unique electrical
events on the residential power line (nominated for the best pa-
per award). In International Conference on Ubiquitous Computing,
pages 271–288. Springer, (2007).

[75] M. Enev, S. Gupta, T. Kohno, and S. N. Patel. Televisions, video privacy,
and powerline electromagnetic interference. In Proceedings of the
18th ACM conference on Computer and communications security,
pages 537–550, (2011).

[76] S. Gupta, M. S. Reynolds, and S. N. Patel. ElectriSense: single-point
sensing using EMI for electrical event detection and classification in
the home. In Proceedings of the 12th ACM international conference
on Ubiquitous computing, pages 139–148, (2010).

[77] S. Gupta, K.-Y. Chen, M. S. Reynolds, and S. N. Patel. LightWave: us-
ing compact fluorescent lights as sensors. In Proceedings of the
13th international conference on Ubiquitous computing, pages 65–
74, (2011).

[78] G. Cohn, D. Morris, S. N. Patel, and D. S. Tan. Your noise is my com-
mand: sensing gestures using the body as an antenna. In Proceed-
ings of the SIGCHI Conference onHuman Factors in Computing Sys-
tems, pages 791–800, (2011).

[79] Y. Zhang, C. Yang, S. E. Hudson, C. Harrison, and A. Sample. Wall++
Room-Scale Interactive and Context-Aware Sensing. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Sys-
tems, pages 1–15, (2018).



112 Bibliography

[80] D. Tao, Y. Guo, Y. Li, and X. Gao, Tensor rank preserving discriminant
analysis for facial recognition, IEEE transactions on image process-
ing 27, 325–334 (2017).

[81] B. Nguyen and B. De Baets, Kernel distance metric learning using
pairwise constraints for person re-identification, IEEE Transactions
on Image Processing 28, 589–600 (2018).

[82] L. Tao, Jaywalkers under surveillance in Shenzhen soon to be pun-
ished via text messages, South China Morning Post 27 (2018).

[83] E. Rodríguez, C. Gutiérrez, C. Ochoa, F. Trávez, L. Escobar, and D. Loza.
Construction of a Computer Vision Test Platform: VISART for Facial
Recognition in Social Robotics. In International Conference on Ap-
plied Technologies, pages 637–651. Springer, (2019).

[84] A. C. Hurst, Facial recognition software in clinical dysmorphology,
Current opinion in pediatrics 30, 701–706 (2018).

[85] J. Tang, X. Zhou, and J. Zheng. Design of Intelligent classroom facial
recognition based on Deep Learning. In Journal of Physics: Confer-
ence Series, volume 1168, page 022043. IOP Publishing, (2019).

[86] S. Rewari, A. Shaha, and S. Gunasekharan, Facial Recognition Based
Attendance System, Journal of Image Processing & Pattern Recog-
nition Progress 3, 43–49 (2016).

[87] C. Monteiro, E. Ogasawara, L. Gonçalves, and J. R. de Toledo Quadros.
Control and Security System for Classroom Access Based on Facial
Recognition. In 2018 XLIV Latin American Computer Conference
(CLEI), pages 654–661. IEEE, (2018).

[88] K. J. Bhojane and S. Thorat, A review of Face Recognition Based Car
Ignition and Security System, International Research Journal of En-
gineering and Technology 5, 532–53 (2018).

[89] A. Patel and A. Verma, Iot based facial recognition door access con-
trol home security system, International Journal of Computer Appli-
cations 172, 11–17 (2017).

[90] V. A. Kumar, V. A. Kumar, S. Malathi, K. Vengatesan, and M. Ramakr-
ishnan, Facial Recognition System for Suspect Identification Using



113

a Surveillance Camera, Pattern Recognition and Image Analysis 28,
410–420 (2018).

[91] N. H. Motlagh, M. Bagaa, and T. Taleb, UAV-based IoT platform: A
crowd surveillance use case, IEEE Communications Magazine 55,
128–134 (2017).

[92] S. Naker andD. Greenbaum,Nowyou seeme: Nowyou still do: Facial
recognition technology and the growing lack of privacy, BUJ Sci. &
Tech. L. 23, 88 (2017).

[93] G. Mokhtari, N. Bashi, Q. Zhang, and G. Nourbakhsh. Non-wearable
human identification sensors for smart home environment: a re-
view. Emerald Publishing Limited, (2018).

[94] H. Li, P. Zhang, S. AlMoubayed, S. N. Patel, andA. P. Sample. Id-match:
A hybrid computer vision and rfid system for recognizing individuals
in groups. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, pages 4933–4944, (2016).

[95] S. Fang, T. Islam, S. Munir, and S. Nirjon. EyeFi: Fast Human Identifi-
cation Through Vision andWiFi-based Trajectory Matching. In IEEE
International Conference on Distributed Computing in Sensor Sys-
tems (DCOSS). IEEE, (2020).

[96] E. R. Schafermeyer, E. A. Wan, S. Samin, N. Zentzis, N. Preiser, J. Con-
don, J. Folsom, and P. G. Jacobs. Multi-resident identification using
device-free IR and RF fingerprinting. In 2015 37th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 5481–5484. IEEE, (2015).

[97] Y. Zeng, P. H. Pathak, and P. Mohapatra. WiWho: wifi-based person
identification in smart spaces. In 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN),
pages 1–12. IEEE, (2016).

[98] F. Hong, X. Wang, Y. Yang, Y. Zong, Y. Zhang, and Z. Guo. WFID: Pas-
sive device-free human identification usingWiFi signal. In Proceed-
ings of the 13th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, pages 47–56, (2016).



114 Bibliography

[99] M. R. Hodges and M. E. Pollack. An ‘object-use fingerprint’: The use
of electronic sensors for human identification. In International Con-
ference on Ubiquitous Computing, pages 289–303. Springer, (2007).

[100] T. Terada, R. Watanabe, and M. Tsukamoto. A user recognition
method using accelerometer for electric appliances. In 2013 16th
International Conference on Network-Based Information Systems,
pages 350–355. IEEE, (2013).

[101] M. Yamada, M. Kudo, H. Nonaka, and J. Toyama. Hipprint person
identification and behavior analys. In 18th International Conference
on Pattern Recognition (ICPR’06), volume 4, pages 533–536. IEEE,
(2006).

[102] R. J. Orr and G. D. Abowd. The smart floor: A mechanism for natural
user identification and tracking. In CHI’00 extended abstracts on
Human factors in computing systems, pages 275–276, (2000).

[103] J. Yun, User identification using gait patterns on UbiFloorII, Sensors
11, 2611–2639 (2011).

[104] R. L. de Carvalho and P. F. F. Rosa. Identification system for smart
homesusing footstep sounds. In 2010 IEEE International Symposium
on Industrial Electronics, pages 1639–1644. IEEE, (2010).

[105] A. Mostayed, S. Kim, M. M. G. Mazumder, and S. J. Park. Foot step
based person identification using histogram similarity and wavelet
decomposition. In 2008 International Conference on Information
Security and Assurance (isa 2008), pages 307–311. IEEE, (2008).

[106] R. Vera-Rodríguez, J. S. Mason, J. Fiérrez, and J. Ortega-García, Analy-
sis of spatial domain information for footstep recognition, IET com-
puter vision 5, 380–388 (2011).

[107] S. Pan, T. Yu, M. Mirshekari, J. Fagert, A. Bonde, O. J. Mengshoel,
H. Y. Noh, and P. Zhang, Footprintid: Indoor pedestrian identifica-
tion through ambient structural vibration sensing, Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 1, 1–31 (2017).



115

[108] T. Teixeira, D. Jung, and A. Savvides. Tasking networked cctv cam-
eras and mobile phones to identify and localize multiple people. In
Proceedings of the 12thACM international conference onUbiquitous
computing, pages 213–222, (2010).

[109] A. D. Wilson and H. Benko. Crossmotion: fusing device and image
motion for user identification, tracking and device association. In
Proceedings of the 16th International Conference on Multimodal In-
teraction, pages 216–223, (2014).

[110] L. Cabrera-Quiros and H. Hung. Who is where? Matching people in
video to wearable acceleration during crowded mingling events. In
Proceedings of the 24th ACM international conference on Multime-
dia, pages 267–271, (2016).

[111] A. Masullo, T. Burghardt, D. Damen, T. Perrett, andM. Mirmehdi.Who
Goes There? Exploiting Silhouettes and Wearable Signals for Sub-
ject Identification in Multi-Person Environments. In Proceedings of
the IEEE International Conference on Computer Vision Workshops,
pages 0–0, (2019).

[112] R. Henschel, T. von Marcard, and B. Rosenhahn. Simultaneous iden-
tification and tracking of multiple people using video and IMUs. In
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 0–0, (2019).

[113] Y. Zhu, Y. Chen, Z. Lu, S. Pan, G.-R. Xue, Y. Yu, and Q. Yang, Heteroge-
neous Transfer Learning for Image Classification, AAAI 25 (2011).

[114] S. J. Pan and Q. Yang, A Survey on Transfer Learning, IEEE Trans.
Knowl. Data Eng. 22, 1345–1359 (2010).

[115] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan, A theory of learning from different domains, Mach Learn
79, 151–175 (2010).

[116] T. Xing, S. S. Sandha, B. Balaji, S. Chakraborty, and M. Srivastava. En-
abling EdgeDevices that Learn fromEachOther: CrossModal Train-
ing for Activity Recognition. In Proceedings of the 1st International
WorkshoponEdge Systems, Analytics andNetworking, pages 37–42,
Munich Germany, (2018). ACM.



116 Bibliography

[117] B. Tan, Y. Zhang, S. J. Pan, and Q. Yang. Distant Domain Transfer
Learning. In Proceedings of the Thirty-First AAAI Conference on Arti-
ficial Intelligence, AAAI’17, pages 2604–2610. AAAI Press, (2017). event-
place: San Francisco, California, USA.

[118] J. Blitzer, R. McDonald, and F. Pereira. Domain Adaptation with
Structural Correspondence Learning. In Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing,
EMNLP ’06, pages 120–128, USA, (2006). Association for Computa-
tional Linguistics. event-place: Sydney, Australia.

[119] M. Harel and S. Mannor. Learning from Multiple Outlooks. In Pro-
ceedings of the 28th International Conference on International Con-
ference on Machine Learning, ICML’11, pages 401–408, Madison, WI,
USA, (2011). Omnipress. event-place: Bellevue, Washington, USA.

[120] Y.-H. H. Tsai, Y.-R. Yeh, and Y.-C. F. Wang. Learning Cross-Domain
Landmarks for Heterogeneous Domain Adaptation. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5081–5090, Las Vegas, NV, USA, (2016). IEEE.

[121] W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu. Translated Learning:
Transfer LearningacrossDifferent Feature Spaces. InProceedings of
the 21st International Conference on Neural Information Processing
Systems, NIPS’08, pages 353–360, Red Hook, NY, USA, (2008). Curran
Associates Inc. event-place: Vancouver, British Columbia, Canada.

[122] L. Duan, D. Xu, and I. W. Tsang. Learning with Augmented Features
for Heterogeneous Domain Adaptation. In Proceedings of the 29th
International Coference on International Conference on Machine
Learning, ICML’12, pages 667–674, Madison, WI, USA, (2012). Omni-
press. event-place: Edinburgh, Scotland.

[123] C.Wang and S.Mahadevan. HeterogeneousDomain AdaptationUs-
ing Manifold Alignment. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence - Volume Vol-
ume Two, IJCAI’11, pages 1541–1546. AAAI Press, (2011). event-place:
Barcelona, Catalonia, Spain.

[124] Y. Aytar, C. Vondrick, and A. Torralba. SoundNet: Learning Sound
Representations from Unlabeled Video. In D. Lee, M. Sugiyama,



117

U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 29. Curran Associates, Inc.,
(2016).

[125] Y. Aytar, L. Castrejon, C. Vondrick, H. Pirsiavash, and A. Torralba, Cross-
Modal Scene Networks, IEEE Trans. Pattern Anal. Mach. Intell. 40,
2303–2314 (2018).

[126] V. Radu and M. Henne, Vision2sensor: Knowledge transfer across
sensing modalities for human activity recognition, Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 3, 1–21 (2019).

[127] K. Ahuja, Y. Jiang, M. Goel, and C. Harrison. Vid2Doppler: Synthesiz-
ing Doppler Radar Data fromVideos for Training Privacy-Preserving
Activity Recognition. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, CHI ’21, New York, NY, USA,
(2021). Association for Computing Machinery.

[128] H. Cai, B. Korany, C. R. Karanam, and Y. Mostofi, Teaching RF to
Sense without RF Training Measurements, Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1–22
(2020).

[129] K. T. Tran, L. D. Griffin, K. Chetty, and S. Vishwakarma. Transfer Learn-
ing from Audio Deep Learning Models for Micro-Doppler Activity
Recognition. In 2020 IEEE International Radar Conference (RADAR),
pages 584–589, Washington, DC, USA, (2020). IEEE.

[130] R. Khurana, N. Banovic, and K. Lyons. In only 3 minutes: perceived
exertion limits of smartwatch use. In Proceedings of the 2018 ACM
International Symposium on Wearable Computers, pages 208–211,
(2018).

[131] R. Khurana, M. Goel, and K. Lyons, Detachable Smartwatch: More
Than A Wearable, Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 3, 1–14 (2019).

[132] F. Shih, I. Liccardi, and D. Weitzner. Privacy tipping points in smart-
phones privacy preferences. In Proceedings of the 33rd Annual ACM



118 Bibliography

Conference on Human Factors in Computing Systems, pages 807–
816, (2015).

[133] B. Liu, J. Lin, and N. Sadeh. Reconciling mobile app privacy and us-
ability on smartphones: Could user privacy profiles help? In Pro-
ceedings of the 23rd international conference on World wide web,
pages 201–212, (2014).

[134] J. Lin, B. Liu, N. Sadeh, and J. I. Hong. Modeling users’ mobile app pri-
vacy preferences: Restoring usability in a sea of permission settings.
In 10th Symposium On Usable Privacy and Security ({SOUPS} 2014),
pages 199–212, (2014).

[135] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 779–788,
(2016).

[136] A. Jalal, Y. Kim, S. Kamal, A. Farooq, and D. Kim. Human daily ac-
tivity recognition with joints plus body features representation us-
ing Kinect sensor. In 2015 International Conference on Informatics,
Electronics & Vision (ICIEV), pages 1–6. IEEE, (2015).

[137] C. Zhang and Y. Tian, RGB-D camera-based daily living activity
recognition, Journal of computer vision and image processing 2, 12
(2012).

[138] A. Doyle, R. Lippert, andD. Lyon, Eyes everywhere: The global growth
of camera surveillance, Routledge (2013).

[139] K. Albrecht andL.Mcintyre. Privacy nightmare: Whenbabymonitors
go bad [opinion]. volume 34, pages 14–19. IEEE, (2015).

[140] S. Zhang, Y. Feng, L. Bauer, L. F. Cranor, A. Das, and N. Sadeh. “Did
you know this camera tracks your mood?”: Understanding Privacy
Expectations and Preferences in the Age of Video Analytics. volume
2021, pages 282–304. Sciendo, (2021).

[141] L. Palen and P. Dourish. Unpacking” privacy” for a networked world.
In Proceedings of the SIGCHI conference on Human factors in com-
puting systems, pages 129–136, (2003).



119

[142] B. K. Horn and B. G. Schunck. Determining optical flow. volume 17,
pages 185–203. Elsevier, (1981).

[143] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. OpenPose: re-
altime multi-person 2D pose estimation using Part Affinity Fields.
volume 43, pages 172–186. IEEE, (2019).

[144] A. Piergiovanni and M. S. Ryoo. Fine-grained activity recognition in
baseball videos. InProceedings of the IEEEConference onComputer
Vision and Pattern Recognition Workshops, pages 1740–1748, (2018).

[145] F. M. Noori, B. Wallace, M. Z. Uddin, and J. Torresen. A robust human
activity recognition approach using openpose,motion features, and
deep recurrent neural network. In Scandinavian conference on im-
age analysis, pages 299–310. Springer, (2019).

[146] C. Neustaedter, S. Greenberg, andM. Boyle,Blur filtration fails to pre-
serve privacy for home-based video conferencing, ACM Transactions
on Computer-Human Interaction (TOCHI) 13, 1–36 (2006).

[147] V. Braun and V. Clarke, Using thematic analysis in psychology, Qual-
itative research in psychology 3, 77–101 (2006).

[148] S. P. Dow, A. Glassco, J. Kass, M. Schwarz, D. L. Schwartz, and S. R.
Klemmer. Parallel prototyping leads to better design results, more
divergence, and increased self-efficacy. volume 17, pages 1–24. ACM
New York, NY, USA, (2010).

[149] C. Faklaris, L. A. Dabbish, and J. I. Hong. A self-reportmeasure of end-
user security attitudes (SA-6). In Fifteenth SymposiumonUsable Pri-
vacy and Security ({SOUPS} 2019), (2019).

[150] A. T.-Y. Chen, M. Biglari-Abhari, I. Kevin, and K. Wang. Context is
King: Privacy Perceptions of Camera-based Surveillance. In 2018
15th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pages 1–6. IEEE, (2018).

[151] D. Barua, J. Kay, andC. Paris. Viewingand controlling personal sensor
data: what do users want? In International Conference on Persua-
sive Technology, pages 15–26. Springer, (2013).



120 Bibliography

[152] I. Janssen and A. G. LeBlanc, Systematic review of the health benefits
of physical activity and fitness in school-aged children and youth,
International journal of behavioral nutrition and physical activity 7,
40 (2010).

[153] S. R. Colberg, R. J. Sigal, J. E. Yardley, M. C. Riddell, D. W. Dunstan,
P. C. Dempsey, E. S. Horton, K. Castorino, and D. F. Tate, Physical ac-
tivity/exercise and diabetes: a position statement of the American
Diabetes Association, Diabetes Care 39, 2065–2079 (2016).

[154] F. R. Roque, A.M. Briones, A. B. García-Redondo,M. Galán, S.Martínez-
Revelles, M. S. Avendaño, V. Cachofeiro, T. Fernandes, D. V. Vassallo,
E. M. Oliveira, et al., Aerobic exercise reduces oxidative stress and im-
proves vascular changes of small mesenteric and coronary arteries
in hypertension, British journal of pharmacology 168, 686–703 (2013).

[155] J. Kruger, H. M. Blanck, and C. Gillespie, Dietary and physical activity
behaviors among adults successful at weight loss maintenance, In-
ternational Journal of Behavioral Nutrition and Physical Activity 3, 17
(2006).

[156] G. Heath, E. H. Howze, E. B. Kahn, and L. T. Ramsey, Increasing physi-
cal activity. A report on recommendations of the Task Force onCom-
munity Preventive Services, MMWR Recomm Rep 50, 1–14 (2001).

[157] M. Standage, J. L. Duda, and N. Ntoumanis, A model of contex-
tual motivation in physical education: Using constructs from self-
determination and achievement goal theories to predict physical
activity intentions., Journal of educational psychology 95, 97 (2003).

[158] D. M. Bravata, C. Smith-Spangler, V. Sundaram, A. L. Gienger, N. Lin,
R. Lewis, C. D. Stave, I. Olkin, and J. R. Sirard, Using pedometers to
increase physical activity and improve health: a systematic review,
Jama 298, 2296–2304 (2007).

[159] R. O. Nelson and S. C. Hayes, Theoretical explanations for reactivity
in self-monitoring, Behavior Modification 5, 3–14 (1981).

[160] C. Seeger, A. Buchmann, and K. Van Laerhoven. myHealthAssistant:
a phone-based body sensor network that captures the wearer’s ex-
ercises throughout the day. In Proceedings of the 6th International



121

Conference on Body Area Networks, pages 1–7. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications En-
gineering), (2011).

[161] C. Seeger, A. Buchmann, and K. Van Laerhoven. Adaptive gym exer-
cise counting formyHealthAssistant. InProceedings of the 6th Inter-
national Conference on Body Area Networks, pages 126–127. ICST (In-
stitute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), (2011).

[162] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher. Activ-
ity recognition and monitoring using multiple sensors on different
body positions. In Wearable and Implantable Body Sensor Net-
works, 2006. BSN 2006. International Workshop on, pages 4–pp.
IEEE, (2006).

[163] K. Rector, C. L. Bennett, and J. A. Kientz. Eyes-free yoga: an exergame
using depth cameras for blind & low vision exercise. In Proceedings
of the 15th International ACM SIGACCESS Conference on Computers
and Accessibility, page 12. ACM, (2013).

[164] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional
pose machines. In CVPR, (2016).

[165] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, Joint face detection and align-
ment usingmultitask cascaded convolutional networks, IEEE Signal
Processing Letters 23, 1499–1503 (2016).

[166] J.-Y. Bouguet, Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm, Intel Corporation 5, 4
(2001).

[167] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, Dense trajectories and
motion boundary descriptors for action recognition, International
journal of computer vision 103, 60–79 (2013).

[168] A. Bedri, R. Li, M. Haynes, R. P. Kosaraju, I. Grover, T. Prioleau, M. Y.
Beh, M. Goel, T. Starner, and G. Abowd, EarBit: Using Wearable Sen-
sors to Detect Eating Episodes in Unconstrained Environments, Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies 1, 37 (2017).



122 Bibliography

[169] R. Chaudhri, J. Lester, and G. Borriello. An RFID based system for
monitoring free weight exercises. In SenSys, (2008).

[170] S. R. Watterson, D. Watterson, and M. D. Watterson. Systems and
Methods to Generate a Customized Workout Routine, (2013). US
Patent App. 13/754,361.

[171] A. Haque, M. Guo, A. Alahi, S. Yeung, Z. Luo, A. Rege, J. Jopling,
L. Downing, W. Beninati, A. Singh, et al. Towards vision-based smart
hospitals: A system for tracking andmonitoring hand hygiene com-
pliance. (2017).

[172] B. D. Carolis and S. Ferilli, Learning Daily Routines in Smart Office
Environments, State of the Art in AI Applied to Ambient Intelligence
298, 122 (2017).

[173] O. Henniger, N. Damer, and A. Braun. Opportunities for biometric
technologies in smart environments. In European Conference on
Ambient Intelligence, pages 175–182. Springer, (2017).

[174] S. E. R. Poluan and Y.-A. Chen. Using Smart Insoles and RGB Camera
for Identifying Stationary Human Targets. In 2019 IEEE 10th Inter-
national Conference on Awareness Science and Technology (iCAST),
pages 1–6. IEEE, (2019).

[175] N.Wojke, A. Bewley, andD. Paulus. Simple online and realtime track-
ing with a deep association metric. In 2017 IEEE international con-
ference on image processing (ICIP), pages 3645–3649. IEEE, (2017).

[176] R. Khurana and M. Goel. Eyes on the Road: Detecting Phone Usage
by Drivers Using On-Device Cameras. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, pages 1–
11, (2020).

[177] G. Dogan, I. Cay, S. S. Ertas, Ş. R. Keskin, N. Alotaibi, and E. Sahin.
Where are you? Human activity recognition with smartphone sen-
sor data. InAdjunct Proceedings of the 2020ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceed-
ings of the 2020 ACM International Symposium on Wearable Com-
puters, pages 301–304, (2020).



123

[178] C. Zhang, J. Yang, C. Southern, T. E. Starner, and G. D. Abowd.
WatchOut: extending interactions on a smartwatch with inertial
sensing. In Proceedings of the 2016 ACM International Symposium
onWearable Computers, pages 136–143, (2016).

[179] G. Reyes, J. Wu, N. Juneja, M. Goldshtein, W. K. Edwards, G. D. Abowd,
and T. Starner, Synchrowatch: One-handed synchronous smart-
watch gestures using correlation and magnetic sensing, Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1, 1–26 (2018).

[180] A. Bedri, D. Li, R. Khurana, K. Bhuwalka, and M. Goel. Fitbyte: Au-
tomatic diet monitoring in unconstrained situations using multi-
modal sensing on eyeglasses. In Proceedings of the 2020 CHI Con-
ference onHumanFactors inComputing Systems, pages 1–12, (2020).

[181] P. Voigt, M. Budde, E. Pescara, M. Fujimoto, K. Yasumoto, andM. Beigl.
Feasibility of human activity recognition using wearable depth
cameras. In Proceedings of the 2018 ACM International Symposium
onWearable Computers, pages 92–95, (2018).

[182] C. Zhang, Q. Xue, A. Waghmare, S. Jain, Y. Pu, S. Hersek, K. Lyons,
K. A. Cunefare, O. T. Inan, and G. D. Abowd, Soundtrak: Continuous 3d
tracking of a finger using active acoustics, Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 1–25
(2017).

[183] L. Sicong, Z. Zimu, D. Junzhao, S. Longfei, J. Han, and X.Wang,Ubiear:
Bringing location-independent sound awareness to the hard-of-
hearing peoplewith smartphones, Proceedings of the ACMon Inter-
active, Mobile, Wearable and Ubiquitous Technologies 1, 1–21 (2017).

[184] A. D. Singh, S. S. Sandha, L. Garcia, and M. Srivastava. RadHAR: Hu-
man Activity Recognition from Point Clouds Generated through a
Millimeter-wave Radar. In Proceedings of the 3rd ACMWorkshop on
Millimeter-wave Networks and Sensing Systems -mmNets’19, pages
51–56, Los Cabos, Mexico, (2019). ACM Press.

[185] Y. Lin, J. Le Kernec, S. Yang, F. Fioranelli, O. Romain, and Z. Zhao,
Human Activity Classification With Radar: Optimization and Noise



124 Bibliography

Robustness With Iterative Convolutional Neural Networks Followed
With Random Forests, IEEE Sensors J. 18, 9669–9681 (2018).

[186] T. Stadelmayer, M. Stadelmayer, A. Santra, R. Weigel, and F. Lurz.
Human Activity Classification Using mm-Wave FMCW Radar by
Improved Representation Learning. In Proceedings of the 4th
ACMWorkshop onMillimeter-Wave Networks and Sensing Systems,
pages 1–6, London United Kingdom, (2020). ACM.

[187] V. Chen, Fayin Li, Shen-Shyang Ho, and H. Wechsler, Micro-doppler
effect in radar: phenomenon, model, and simulation study, IEEE
Trans. Aerosp. Electron. Syst. 42, 2–21 (2006).

[188] B. Settles. Active learning literature survey. University of Wisconsin-
Madison Department of Computer Sciences, (2009).

[189] M. L. De Prado. Advances in financial machine learning. John Wiley
& Sons, (2018).

[190] S. Zhao, B. Li, P. Xu, and K. Keutzer. Multi-source domain adaptation
in the deep learning era: A systematic survey. (2020).

[191] L. Senigagliesi, G. Ciattaglia, A. De Santis, and E. Gambi, PeopleWalk-
ing Classification Using Automotive Radar, Electronics 9, 588 (2020).

[192] B. Cagliyan and S. Z. Gurbuz, Micro-Doppler-Based Human Activity
Classification Using the Mote-Scale BumbleBee Radar, IEEE Geosci.
Remote Sensing Lett. 12, 2135–2139 (2015).

[193] R. Zhang and S. Cao, Real-Time Human Motion Behavior Detection
via CNN Using mmWave Radar, IEEE Sens. Lett. 3, 1–4 (2019).

[194] O. D. Lara and M. A. Labrador, A Survey on Human Activity Recogni-
tion using Wearable Sensors, IEEE Commun. Surv. Tutorials 15, 1192–
1209 (2013).

[195] S.-R. Ke, H. Thuc, Y.-J. Lee, J.-N. Hwang, J.-H. Yoo, and K.-H. Choi, A
Review on Video-Based Human Activity Recognition, Computers 2,
88–131 (2013).

[196] D. Liang and E. Thomaz, Audio-Based Activities of Daily Living (ADL)
Recognition with Large-Scale Acoustic Embeddings from Online



125

Videos, Proc. ACM Interact. Mob.Wearable Ubiquitous Technol. 3, 1–18
(2019).

[197] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition. In Proceedings of the 31st International
Conference on International Conference onMachine Learning - Vol-
ume 32, ICML’14, pages I–647–I–655. JMLR.org, (2014). event-place:
Beijing, China.

[198] G. M. Weiss, K. Yoneda, and T. Hayajneh, Smartphone and
Smartwatch-Based Biometrics Using Activities of Daily Living, IEEE
Access 7, 133190–133202 (2019).

[199] F. Chollet et al. Keras, (2015).

[200] A. Y. Yang, R. Jafari, S. S. Sastry, and R. Bajcsy,Distributed recognition
of human actions using wearable motion sensor networks, Journal
of Ambient Intelligence and Smart Environments 1, 103–115 (2009).

[201] H. Kwon, C. Tong, H. Haresamudram, Y. Gao, G. D. Abowd, N. D. Lane,
and T. Ploetz, IMUTube: Automatic extraction of virtual on-body ac-
celerometry from video for human activity recognition, Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies 4, 1–29 (2020).


	Abstract
	Acknowledgements
	Contents
	Introduction
	Mobile and Wearable Sensing
	Ambient Sensing

	Background and Related Work
	Privacy Expectations of Ambient Sensors
	Ambient Sensing Techniques
	Using Cameras for Activity Recognition
	Non-Camera based Motion Tracking for Activity Recognition
	Infrastructure-Mediated Sensing

	User Identification
	User Identification by Facial Recognition
	User Identification using Custom Hardware
	Video and IMU Fusion Techniques for User Identification

	Heterogeneous Domain Adaptation

	My Approach
	Key Characteristics of Practicality
	Summary of Explored Approaches

	Understanding The Impact of Different Sensing Techniques on A User's Privacy Preferences 
	Introduction
	Mixed Methods Approach
	Study 1: Qualitative Interviews
	Pilot
	Study Procedure
	Participants
	Data Collection and Analysis
	Findings

	Study 2: Large Scale Vignette Study
	Results
	Discussion & Conclusion

	GymCam: Detecting, Recognizing and Tracking Simultaneous Exercises in Unconstrained Scenes
	Introduction
	Theory of Operation
	Data Collection
	Participants and Protocol
	Labeling

	Algorithm
	Detecting Exercise Trajectories
	Clustering Points for Each Exercise
	Repetition Count
	Exercise Recognition

	Results
	Detecting Exercise Trajectories
	Clustering Points for Each Exercise
	Repetition Count
	Exercise Recognition

	Discussion and Limitations
	Reliance on Motion Differences for Clustering
	Tracking Irregular Motions
	User Identification
	Viewpoint Invariance
	Privacy
	Unconstrained Evaluation Environment

	Conclusion

	MotionID: A hybrid camera-wearable approach to identify users in a group
	Introduction
	Theory of Operation
	Data Collection
	Extracting Motion Information

	Algorithm
	Feature Computation
	Matching Users

	Results
	Group of 2
	Group of 4
	Group of 8
	Example Applications

	Discussion and Conclusion

	IMU2Doppler: Cross-Modal Domain Adaptation for Doppler-based Activity Recognition Using IMU Data
	Introduction
	Algorithm
	Sensing Principle
	Knowledge Transfer
	IMU: Data Processing and Neural Architecture
	End-to-end learning algorithm
	Doppler: Data Processing and Neural Architecture

	Data Collection
	Participants and Apparatus
	Experimental Design and Protocol

	Results
	Doppler Model Selection/Baselines
	Domain Adaptation Results
	Domain Adaptation Using Multiple Datasets Combined As A Single Source

	Limitations and Discussion
	Classifier Accuracy for Real World Use
	Limited Activities in Source Domain
	Controlled Environment for User Study

	Conclusion

	Conclusion
	Future Work
	Improving Privacy Control of Sensing Systems: 
	Data labeling techniques for building deployable systems: 
	Practical & Robust Evaluation Systems


	Bibliography

