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We present a machine learning approach that uses data from smartphones and ftness trackers of 138 college 
students to identify students that experienced depressive symptoms at the end of the semester and students 
whose depressive symptoms worsened over the semester. Our novel approach is a feature extraction technique 
that allows us to select meaningful features indicative of depressive symptoms from longitudinal data. It 
allows us to detect the presence of post-semester depressive symptoms with an accuracy of 85.7% and change 
in symptom severity with an accuracy of 85.4%. It also predicts these outcomes with an accuracy of >80%, 
11-15 weeks before the end of the semester, allowing ample time for preemptive interventions. Our work has 
signifcant implications for the detection of health outcomes using longitudinal behavioral data and limited 
ground truth. By detecting change and predicting symptoms several weeks before their onset, our work also 
has implications for preventing depression. 
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1 INTRODUCTION 

Depression is a common and serious mental health disorder that is especially prevalent among 
college students. In 2013, the percentage of college students in the United States that reported 
having difculty functioning in the last 12 months due to depression was over 33%1. Depression 
has been found to afect academic participation, productivity, and performance [35, 37], and may 
double the likelihood of dropping out from college [30]. Further, depression is the most common 
disorder among people with suicidal behaviors [40, 41, 52]. It is estimated that approximately 11.2% 
of undergraduates seriously considered suicide and 2.1% attempted suicide in 2015-20162. 
Although treatment for depression is efective and includes a variety of methods, such as psy-

chotherapy and medication, a large number of afected students do not seek treatment [29, 34]. 
Commonly reported barriers to seeking treatment include the belief that stress is a normal part 
of student life and treatment is not needed. Furthermore, students may not be aware that they 
are experiencing not only stress, but also depression [17]. Tools used to monitor the severity of 
depressive symptoms rely on periodic self-reports that are subjective and if administered too often 
may reduce compliance. Hence, there is a need to develop more efcient methods to monitor and 
identify changes in depressive symptoms in college students, and predict future depressive episodes. 
Built-in sensors on mobile phones and wearable ftness trackers allow us to passively and 

unobtrusively collect information such as location, communication, environment, phone usage, 
physical activity, and sleep. Previous work has shown that such information is linked to depressive 
symptoms, such as social isolation and sleep disturbances [4]. Measuring the severity of depressive 
symptoms using such sensors could enable continuous depression detection, prediction before 
onset, and longitudinal symptom monitoring in-the-wild. Ultimately, it creates the potential for 
technology-mediated real-time interventions that support the diagnosis, treatment, and prevention 
of depression. As a result, over the past few years, researchers have conducted several studies 
that use statistics to understand the relationship between sensor data from phones and wearables, 
and depression [9, 23, 39, 59, 60, 74]. A growing body of research also focuses on using machine 
learning to detect depression using sensor data [11, 32, 60, 73, 77], and there has been some initial 
work on predicting depression in advance as well [11]. 

Depression, however, is a long-term health problem that needs to be continuously monitored and 
managed. Although mobile and wearable technology make the long-term monitoring of depression 
possible, some issues remain. Machine learning (ML) methods used for detecting and predicting 
depression rely on subjective ground truth acquired through psychological questionnaires such 
as BDI-II [67]. ML models are trained to detect these scores and their output is compared with 
these scores to measure their accuracy of prediction. Obtaining ground truth from users with 
depression or any mental health problem frequently over a long period of time is not sustainable as 
frequent requests to complete questionnaires will over time become an extra burden especially when 
the user is experiencing severe symptoms. Nevertheless, so far, all existing research in detecting 
and inferring depression has relied on frequent measurement of depression status (e.g., every 
week). Further, while existing research has evaluated ML methods for detecting the presence of 
1http://www.apa.org/monitor/2014/09/cover-pressure.aspx 
2http://www.acha-ncha.org/reports_ACHA-NCHAIIc.html 
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depressive symptoms, whether or not these methods can capture changes in depressive symptoms 
is unexplored. 

In this paper, we present a machine learning approach that uses data from mobile and wearable 
sensors to detect and monitor depression and change in depression at any time point, with limited 
ground truth data. Although our approach can be generalized to any chronic and longitudinal 
health problem, we evaluate it in the context of depression. We use data from smartphones and 
wearable ftness trackers from 138 students at an R-1 Carnegie-classifed US University to identify 
students who experienced depressive symptoms or whose depressive symptoms worsened by the 
end of a semester. Our machine learning approach advances the research in mobile health and 
analysis as follows: 

(1) To build machine learning models that can make accurate predictions from long-term data 
without frequent ground truth acquisition (in our case only two measurements at the be-
ginning and end of semester), data needs to be processed and aggregated without losing 
key behavioral information during diferent time periods that may be useful in detecting 
and predicting depression. Therefore, we extract fne-grained features to capture behavioral 
markers in diferent time windows with varying granularity during the day, week, and 
semester. Although this step results in a number of features (>60,000) that is signifcantly 
larger than the number of samples (138 students), the hierarchical and incremental modeling 
component and stable feature selection in the pipeline are capable of identifying the most 
signifcant features, i.e., features that are commonly chosen in most validation runs. We 
evaluate our approach by identifying students that have post-semester depressive symptoms 
using data collected over one semester (16 weeks) from the smartphones and ftness trackers 
of 138 college students, and achieve an accuracy of 85.7%. We demonstrate that our method 
outperforms of-the-shelf ML methods such as Lasso and K-Nearest Neighbors. 

(2) We also evaluate our approach on its ability to detect change in depressive symptoms. To the 
best of our knowledge, our work is the frst to detect change in depressive symptom severity 
without any knowledge of the students’ initial or previous depression severity. We detect 
whether students’ depressive symptom severity changed with an accuracy of 85.4%. 

(3) Previous work on prediction has only looked into predicting depression 0-2 weeks in advance 
and it may not leave enough time for interventions [11]. Our work is the frst to demonstrate 
that it is possible to predict depression several weeks in advance. We are able to identify 
students who will have depressive symptoms by the end of the semester with an accuracy of 
81.3%, 11 weeks before the semester ends. 

2 RELATED WORK 

The Diagnostic and Statistical Manual of mental disorders (DSM-5) [4] describes several depressive 
disorders, most prevalent of which are Major Depressive Disorder (MDD) and Persistent Depressive 
Disorder (PDD). People with these disorders experience similar symptoms over diferent periods 
of time (e.g., at least 2 weeks for MDD and at least 2 years for PDD). These symptoms include 
depressed mood, diminished interest or pleasure in almost all activities, sleep disturbances such as 
insomnia or hypersomnia, psychomotor agitation or retardation, fatigue or loss of energy, feelings of 
worthlessness or guilt, diminished concentration, and recurrent thoughts of suicide. Many of these 
symptoms manifest as verbal, non-verbal or daily behaviors [22] and can be passively sensed with 
limited user involvement. 

Automated techniques for identifying depressive symptoms can be grouped based on the type of 
behavioral symptoms they sense – verbal [18, 58], non-verbal [1–3, 15, 38, 62–64, 68], or daily. Our 
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approach focuses on daily behaviors that can be sensed using smartphones and ftness trackers, 
which allows for depression detection and longitudinal symptom monitoring. 

Daily behaviors are related to communication, movement patterns, smartphone use, sleep, and 
physical activity, which can be sensed using sensors embedded in smartphones and ftness trackers. 
Features indicative of daily behaviors can be extracted from sensor data to capture behavioral 
symptoms of depression. Previous research on this topic either uses statistical analysis to explore 
the relationship between these features and depression or uses these features to build machine 
learning models to detect depression. 

2.1 Exploring the statistical relationship between behavioral features and depression 

Doryab et al. [23] explored detection of behavior change in people with major depression from 
smartphone data. Their pilot study of three participants (2 female and 1 male) over 4 months found 
an inverse relationship between the number of outgoing calls and depression scores over time 
with the male patient, and a direct relationship between the number and duration of outgoing 
calls and depression scores over time with the female patients. A study with 216 college students 
[39] demonstrated a direct relationship between Internet use and depression, i.e., students with 
depressive symptoms used the Internet signifcantly more than non-depressed students. They 

Table 1. Related Work for Depression Detection. For this paper (last row), note that “all” results are obtained 
using all features, while “best” results are obtained via a feature ablation study (see section 4). 

Reference Part. Duration Sensors Outcome Accuracy Other Met-
rics 

[60] 28 adults 2 wks Location (only 1 feat.) Dep. at end of 2 wks 86.5% 
[11] 28 adults avg. 10 

wks/user 
Location Detecting dep. over 

diferent periods of 
time, and predicting 
dep. 1-14 days in ad-

Sensitivity= 
0.71/Speci-
fcity= 0.87 

vance. 
[73] 36 people Variable Smartphone sensors Dep. biweekly 61.5% F1=0.62 
[32] 79 col. age 7-8 mos Location Clinical dep. bi-

weekly 
F1=0.82 

[77] 68 col. studs 18 wks Smartphone sen-
sors (light, GPS, 
accelerometer, micro-
phone, screen status) 
& heart rate sensor 

Dep. weekly F1=0.75 

[45] 28 adults avg. 10 
wks/user 

Location Detecting dep. over 
diferent periods of 
time. No early pre-
diction. 

Sensitivity= 
0.77/Speci-
fcity= 0.91 

This paper 138 col. studs 16 wks Smartphone sen-
sors (bluetooth, 
calls, GPS, micro-
phone, screen 

Post-semester dep. 

Change in dep. 

85.7% (best); 
82.3% (all) 
85.4% (best); 
75.9% (all) 

F1=0.82 (best); 
0.78 (all) 
F1=0.80 (best); 
0.67 (all) 

status) & wear. ft- Explored predicting 
ness tracker (steps, the above 2 out-
sleep comes 1-15 weeks in 

advance. Results: > 
80% accuracy 11-15 
weeks ahead of the 
end of semester, 
for both prediction 
problems. 
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also switched more frequently between email, chat rooms, social media, video watching, and 
games. Saeb et al. [60] explored the relationship between depression severity score and mobile 
data including location traces and phone usage in 28 adults over a two-week period and found 
signifcant correlations between participants’ depression scores (from a standardized assessment) 
and Location features such as location variation, regularity in movement over days (“circadian 
movement”) and evenness in time spent across locations (“location entropy”). They also found 
signifcant correlations between phone usage features such as usage duration and frequency. They 
replicated the same results using Location features on another dataset [74] containing data from 48 
college students over a 10-week period [59]. This dataset was originally collected as part of the 
StudentLife study at Dartmouth [74] which revealed signifcant correlations between depression 
scores and sleep duration, conversation duration, as well as frequency and number of collocations. 
Further analysis of the dataset showed signifcant relationships between change in depression 
scores and features such as sleep duration, speech duration, and geospatial activity (from locations 
and WiFi scans) [9]. 

2.2 Detecting depression 

The statistical relationships described above suggest that machine learning models could be used 
to detect depression. As summarized in Table 1, existing work has made important strides in 
this domain. Saeb et al. [60] were able to achieve a leave-one-participant-out accuracy of 86.5% 
for distinguishing between participants with depressive symptoms and those without depressive 
symptoms. However, they collected data from 28 adults over a short two-week period and used only 
one feature from the Location sensor in their machine learning model. Further, cross-validation 
was not used for feature selection, thus reducing the generalizability of their model. Canzian and 
Musolesi [11] trained personal models for each of their 28 users using features related to mobility 
patterns from location data, to detect periods in which users experience an unusual depressed 
mood. Their models achieved high sensitivity and specifcity values, which means that for most 
of the users, they were able to detect periods of depressed mood (related to sensitivity) while 
generating few false alarms (related to specifcity). They also extended their approach to predicting 
depressive symptom severity 1-14 days in advance. Wahle et al. [73] detect biweekly depression in 
36 participants over 2-10 weeks using a very limited set of features from location, physical activity, 
phone usage, calls, texts, and WiFi scans, and achieve an accuracy of 61.5%. Farhan et al. [32] 
detect biweekly depression in 79 college-age participants over 7-8 months using location data as 
input to their model and clinical evaluations as their ground truth, and achieve a F1 score of 0.82. 
Wang et al. [77] detect depression on a week-by-week basis using features from smartphone and 
wearable data as input and weekly subjective assessments as ground truth from 68 undergraduates 
over two 9-week terms, and achieved 81.5% recall and 69.1% precision. In addition to some of the 
above features, they used campus-specifc features such as time spent in dorm and time spent at 
study places. Mehrotra and Musolesi [45] used autoencoders for automatically extracting features 
from the raw GPS data, and achieved better results than “hand-crafted” location features. 
All of this earlier work has heavily relied on frequent assessment of depression (weekly or 

biweekly). As mentioned previously, in real world situations, the mental health status of individual 
people is often unknown which makes the above mentioned approaches less usable and realistic. In 
this paper, we address this specifc issue through developing a machine learning pipeline capable 
of detecting depression without frequent ground truth data. Further, while subjective measures for 
depression are evaluated for their “sensitivity to change” [8, 42, 50], the same has not been done 
for depression models based on passive sensing. That is, we do not know if existing ML methods 
for depression detection work well because they capture transient depressive symptoms or latent 
characteristics known to increase the risk of depression (e.g. early major life events [49], thought 
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patterns [71]). In this paper, in addition to detecting post-semester depression, we detect change in 
depression, thereby resulting in ML models that capture transient depressive symptoms. 

Finally, predicting depression in advance is a very useful task as it can allow us to intervene before 
the onset or worsening of symptoms. Subjective measures for depression are designed to measure 
symptom severity at a particular time by directly asking the participant about their symptoms. 
Passive sensing models, however, have the potential to do more than that, as they may be able 
to capture early behavioral signs of depression that even the participant may not be aware of. 
Other than the study in [11] which attempted to predict depression 0-2 weeks in advance, we are 
unaware of any research in early prediction of depression. With our approach, we can predict 
the post-semester depression with an accuracy of > 80% as early as week 5 of the 16 weeks-long 
semester, giving clinicians a larger window of time for interventions. 
In the following sections, we describe our approach in detail, starting with data collection. 

3 DATA COLLECTION 

In this section, we describe the participant recruitment and the data collection process (including 
participant-reported depression measures and passively sensed data from smartphones and ftness 
trackers). 

3.1 Participants and Recruitment 
Participants in the study were from a pool of frst-year undergraduate students at a Carnegie-
classifed R-1 University in the United States. Students were eligible to participate in the study if 
they were enrolled as a full-time student on campus for the semester and owned a data plan-enabled 
smartphone running iOS or Android. The research team advertised the study via emails and posts 
to student mailing lists and Facebook groups. Students were invited to our lab to be screened for 
eligibility, provide informed consent, download a mobile application to track sensor data from their 
smartphones and receive a Fitbit Flex 2 to track steps and sleep. After enrollment, the students 
completed an initial depression questionnaire online. They also gave us the phone numbers of their 
top-10 family members, friends on-campus, and friends of-campus, which were used to compute 
certain “calls”-related features (see section 4.1.2). Data was collected from smartphone and Fitbit 
sensors as described in Section 3.3 and was continuously recorded over the duration of the study: 
one semester (16 weeks). 
Out of the 188 frst-year college students initially recruited, 138 completed the study and the 

depression questionnaires at the beginning and the end of the study. The questionnaires were 
delivered via email and administered using Qualtrics – an online survey platform [56]. For their 
participation, the participants were allowed to keep the Fitbit Flex 2 and were compensated up to 
USD $205 spread over diferent points in time – $10 after the baseline appointment, $20 after the 
pre-semester depression questionnaire, $25 after week 1, $40 after week 7, $60 after week 15, $25 
after post-semester depression questionnaire, and $25 bonus for compliance. 

3.2 Participant-reported Depression Measures (Ground Truth) 
The Beck Depression Inventory-II (BDI-II) [8, 25] is a widely used psychometric test for measuring 
the severity of depressive symptoms, and has been validated for college students [25, 67]. It con-
tains 21 questions, with each answer being scored on a scale of 0-3. Higher scores indicate more 
severe depressive symptoms. For college students, the cut-ofs on this scale are 0-13 (no or minimal 
depression), 14-19 (mild depression), 20-28 (moderate depression) and 29-63 (severe depression) [25]. 

The semester spanned over 16 weeks towards the end of which exams start and continue into the 
17th week. Since we expected compliance for answering the post-semester depression questionnaire 
during exams to be low, we concluded the study at the end of week 16. Participants answered 
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questions from BDI-II at the beginning (week 1) and at the end (week 16) of the semester, which 
gave us their pre-semester and post-semester depression scores indicating the severity of depressive 
symptoms. From these scores, we calculated ground truth for two outcomes, as follows: 

(1) Post-semester Depression (Binary): All participants with no or minimal depression (post-
semester BDI-II score < 14) at the end of the semester were classifed as “not having depres-
sion”. While all participants with mild, moderate, or severe depression (post-semester BDI-II 
score >= 14) at the end of the semester were classifed as “having depression”. 

(2) Change in Depression (Binary): We compare the pre-semester depression severity levels to 
the post-semester depression severity levels to obtain the change in depression severity levels. 
Using the standardized thresholds listed above, we assessed both pre-semester and post-
semester BDI-II scores as being in one of four levels: no or minimal, mild, moderate, or severe. 
The depression severity levels did not improve for any participant. If there was no change 
in depression severity levels for a participant, the participant’s “Change in Depression” was 
classifed as “did not worsen”, otherwise it was classifed as “worsens”. 

3.3 Passive Data Collection 

We              
backend and network infrastructure to collect sensor data unobtrusively from students’ smartphones. 
This enabled us to record nearby bluetooth addresses, location, phone usage (i.e., when the screen 
status changed to on or of and locked or unlocked), and call logs for incoming, outgoing and missed 
calls. In order to assess calls to close contacts, we asked participants to provide phone numbers 
of family members, friends on-campus, and friends of-campus that they most frequently contact. 
We also used a conversation plugin for AWARE (same as the one used by [74]) which makes audio 
inferences such as silence, voice, noise, or unknown. Further, we equipped participants with a 
Fitbit Flex 2 which records the number of steps and sleep status (asleep, awake, restless, or unknown). 
Calls, conversation, and phone usage are event-based sensor streams, whereas Bluetooth, location, 
sleep, and steps are sampled time series. These time series data streams were sampled at diferent 
rates, due to the capabilities of the hardware being used. Bluetooth and Location coordinates 
are sampled at 1 sample per 10 minutes, sleep at 1 sample per minute, and steps at 1 sample per 
5 minutes. 
Data from AWARE was deidentifed and automatically transferred over WiFi to our backend 

server on a regular basis, and data from the wearable Fitbit was retrieved using the Fitbit API at the 
end of the study. Participants were asked to keep their phone and Fitbit charged and carry/wear 
them at all times. 

To maintain the participants’ privacy and confdentiality, we stored all identifable information 
(e.g. names, contact information) separate from their deidentifed survey and sensor data. Only a few 
authorized members of the research team had access to the participants’ identifable information. 
All data sources – identifable or not were password protected for security. At the University where 
this research was conducted, the Institutional Review Board (IRB) reviewed, oversaw and approved 
all procedures. 

installed the AWARE framework [33] – a data collection mobile application with supporting

4 DATA PROCESSING AND ANALYSIS 

This section describes the data processing and analysis pipeline, that consisted of 4 main steps: 

(1) Feature extraction to acquire sets of behavioral and behavioral change features from diferent 
sensors over diferent time slices (Section 4.1). 

(2) Handling missing features (Section 4.2). 
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(3) Machine learning to detect Post-semester Depression and Change in Depression (Section 
4.3), which involved: 

(a) Detecting depression outcomes using 1-feature set models (i.e., models containing features 
from one sensor). 

(b) Combining detection probabilities given by these 1-feature set models to obtain a fnal 
detection label for our two outcomes. 

(4) Further, we slightly modifed step (3) for diferent outcomes, diferent sensor combinations, 
and to predict future depressive episodes (also in Section 4.3). 

This pipeline is illustrated in Figure 1 and explained in the subsections below. 

Fig. 1. Pipeline for the data processing and analysis. 

4.1 Feature Extraction 

We computed seven feature sets from the collected data: Bluetooth, Calls, Location, Campus Map, 
Phone Usage, Steps, and Sleep. These feature sets were chosen because they have the potential 
to capture depressive symptoms described in the DSM-5 [4]. Location and Campus Map features 
capture users’ mobility patterns; Calls features capture communication patterns; Bluetooth features 
can refect both mobility and communication patterns; and Steps capture physical activity. Together 
they can be strong indicators of social withdrawal and diminished interest or pleasure in almost all 
activities, especially social and occupational activities. Further, fatigue or loss of energy can cause 
users to take longer to perform certain tasks, which may also be represented by these features. 
Sleep disturbances such as insomnia or hypersomnia are often present in people with depression 
[53]. Depression also causes diminished concentration which can afect phone usage [20, 43]. 

Due to some technical issues with AWARE’s conversations plugin, many conversation inferences 
were missing. Hence, we used available conversation inferences to inform a Campus Map feature 
called social duration (explained later), but did not extract a Conversations feature set. 

The feature extraction approach for each of the seven feature sets is described in Sections 4.1.1– 
4.1.7. These features were extracted over diferent temporal slices (see section 4.1.8). We also 
extracted behavioral change counterparts for every feature (see section 4.1.9). As a result, we 
obtained 14 feature matrices for the seven feature sets and their behavioral change counterparts as 
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explained in section 4.1.10. We did not include pre-semester depression scores or labels as features in 
any of our models. 

4.1.1 Bluetooth Feature Set. Bluetooth features were calculated from the scanned bluetooth ad-
dresses recorded by the Bluetooth sensor in the smartphone, and can be used to sense the user’s 
social context [12, 13, 27, 51, 79]. While a relationship between a bluetooth feature and depression 
has been found [74], bluetooth features have not been used to detect depression. 

Scanned bluetooth addresses can be clustered into the participant’s own devices (“self” – scanned 
most often), family/ roommate/ ofce mate’s devices (“related” – scanned less often than “self” 
but more often than “others”), and other people’s devices (“others” – scanned least often) to help 
us estimate how many diferent people the participant meets, thereby capturing social activity 
and collocated communication. Since a participant may or may not be living with family or a 
roommate or be sharing an ofce, we clustered scanned addresses twice. First, the addresses were 
clustered into two categories for “self” vs. “others” (K = 2 clusters), then into three clusters - “self” 
vs. “related” vs. “others” (K = 3 clusters), and then chose the model which ft the data best out of 
the two sets. This process is described below. 

(1) We calculated the number of days each unique bluetooth address was scanned at least once. 
That is, number _o f _daysbti . 

(2) We calculated the average frequency of each unique bluetooth address. 
That total _ is, countaveraдe_f requency bti 

bti = number _of _days .
(3)

bti 

 We Z-normalized the number_o f _daysbti and averaдe_f requencybti in order to give equal 
weight to both while optimizing score in step 4. 

(4) For each bluetooth address, we computed Score = number _o f _daysbti +averaдe_f requencybti . 
(5) We used K-means clustering to cluster Score from step 4 for all bluetooth addresses using 

K=2 and K=3. 
(6) We chose the model with K=2 if sum of squared distances between clustered points and 

cluster centers was smaller than what we get with K=3. Otherwise we chose model with 
K=3. 

(7) If model with K=2 was chosen, the cluster with higher scores contained the participant’s 
own devices (“self”), while the other cluster contained other people’s devices (“others”). If the 
model with K=3 was chosen, the cluster with highest scores contained the participant’s own 
devices (“self”), the cluster with lowest scores contained other people’s devices (“others”), 
and the remaining cluster contained devices of the participant’s partners, roommates, or 
ofcemates (“related”). 

Once the bluetooth addresses scanned were clustered into “self” vs. “others” or “self” vs. “related” 
vs. “others”, we extracted the number of unique devices, number of scans of most and least frequent 
device, and sum, average, and standard deviation of the number of scans of all devices from all devices 
(i.e., ignoring clusters), “self” devices, “related” devices, or “others” devices. 

It is important to note that we do not have the bluetooth addresses of devices belonging to the 
user or people related to the user. We are using the frequency of occurrence of the devices scanned 
to heuristically ‘guess’ these clusters/ categories. Wang et. al. [74] used the number of collocated 
bluetooth devices to estimate the user’s social context, however these devices may or may not 
belong to other people. However, these devices would also include the user’s own devices, and 
hence may not accurately represent the user’s social context. By using the frequency of occurrence 
of these devices to obtain 3 clusters, we build on previous work by attempting to separate the 
devices that are more likely to (1) belong to the user (“self”), (2) belong to people the user meets/ 
sees regularly (“related”), and (3) belong to other people (“others”). If the user does not meet many 
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people regularly, then K=2 may ft the data better than K=3, thus giving us devices that are more 
likely to (1) belong to the user (“self”) and (2) belong to other people (“others”). 

4.1.2 Calls Feature Set. Calls features were calculated using the call logs from the smartphone. We 
extracted the following features: 

Number and duration of incoming, outgoing, and missed calls to everyone, family members, friends 
of-campus, and friends on-campus, number of correspondents overall, and number of correspondents 
who are family members, friends of-campus or friends on-campus. 

4.1.3 Location Feature Set. Location features are derived from the Location ‘virtual’ sensor of the 
smartphone which uses proprietary algorithms to come up with the best estimate of location based 
on available GPS, WiFi and Celltower signals. We extracted the following Location features: 
Location variance (sum of the variance in latitude and longitude coordinates), log of location 

variance, total distance traveled, average speed, and variance in speed. Circadian movement [60] was 
calculated using the Lomb-Scargle method [55]. It encodes the extent to which a person’s location 
patterns follow a 24-hour circadian cycle. Then, we carried out the following processing steps: 

(a) Speed of the person was calculated from the distance covered and time elapsed between two 
samples. Samples with speed > 1 km/h were labeled as “moving”, else “static” [59, 60]. 

(b) Samples labeled as “static” were clustered using DBSCAN [31] to fnd signifcant places 
visited by the participant. When we clustered all data and extracted each feature per week 
or per half-semester, we used global clusters. When we frst split the data into weeks or 
half-semesters and then extracted features from each temporal slice, we used local clusters. 
Temporal slicing is discussed in section 4.1.8. 

These steps allowed us to extract: number of signifcant places, number of transitions between places, 
radius of gyration [11], time spent at top-3 (most frequented) local and global clusters, percentage of 
time spent moving, and percentage of time spent in insignifcant or rarely visited locations (labeled as 
-1 by DBSCAN). We also calculated statistics related to length of stay at clusters such as maximum, 
minimum, average, and standard deviation of length of stay at local and global clusters. Location 
entropy and normalized location entropy across local and global clusters were also calculated 
(implemented using the method in [60]). Location entropy will be higher when time is spent 
evenly across signifcant places. Calculating features for both local and global clusters allowed 
us to capture diferent behaviors related to the user’s overall location patterns (global) and the 
user’s location patterns within a time slice (local). For example, time spent at top-3 global and local 
clusters captures the time spent at places of overall signifcance to the user and places signifcant 
to the user in a particular time slice (e.g., mornings on weekends). 
We assume the place most visited by the participant at night to be their home location. To 

approximate the home location, we performed steps (a) and (b) above on the location coordinates 
from all nights (12am to 6am) and assumed the center of the most frequented cluster to be the 
participant’s home location center. Since we don’t know the radius of the home, we calculated two 
home-related features time spent at home assuming home to be within 10 meters of the home location 
center, and time spent at home assuming home to be within 100 meters of the home location 3 center . 

4.1.4 Campus Map Feature Set. We also analyze the user’s location patterns in relation to their 
college campus. First, we obtained a campus map of the participants’ University. Then, we marked 
out the campus boundary and diferent types of buildings on campus by creating polygons on 
Google Maps using GmapGIS4   . We annotated six types of buildings and spaces – Greek houses 
3The 100m threshold is the default geofencing radius used by automation systems like HomeKit and https://www.home-
assistant.io/, while the 10m threshold corresponds to the accuracy of GPS in an urban environment [47].
4http://www.gmapgis.com/ 
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that hold the most social events, all Greek houses, student apartments, residential halls, athletic 
facilities, and green spaces. As academic buildings in this University are often collocated with other 
spaces, we assume any on-campus space not belonging to these six categories to be an academic 
building. For every location sample, we assigned one of eight location type labels (6 building/space 
types, academic, of-campus). Then, the following features were extracted for each type of space: 
time spent at each location type in minutes, percentage time spent at each location type, number of 
transitions between diferent spaces, number of bouts (or continuous periods of time) at space, number 
of bouts during which participant spends 10, 20, or 30 minutes at the same space, and minimum, 
maximum, average, and standard deviation of length of bouts at each space. 

Campus map features also include two multimodal features – study duration and social duration, 
as implemented by Wang et al. [75, 77]. These features fuse data from Location, Phone Usage, 
Conversation, and Steps sensors. Study duration was calculated by fusing location type labels with 
data from the phone usage and steps sensors. A participant was assumed to be studying if they 
spent 30 minutes or more in an academic building while being sedentary (fewer than 10 steps) and 
having no interaction with their phone. Social duration was calculated by fusing location type 
labels with data from the conversation sensor. A participant was assumed to be social if they spent 
20 minutes or more in any of the residential buildings or green spaces and the conversation sensor 
inferred human voice or noise for 80% or more of that time. Study duration was only calculated 
in academic buildings, while social duration was only calculated in residential buildings or green 
spaces. 

4.1.5 Phone Usage Feature Set. Phone Usage features were calculated using the screen status sensor 
in the smartphone, which recorded screen status (on, of, lock, unlock) over time. We extracted the 
following phone usage features: 

Number of unlocks per minute, total time spent interacting with the phone, total time the screen was 
unlocked, the hour of the days the screen was frst unlocked or frst turned on, the hour of the days the 
screen was last unlocked, locked, and turned on, and the maximum, minimum, average, and standard 
deviation of length of bouts (or continuous periods of time) during which the participant is interacting 
with the phone and when the screen is unlocked. A participant is said to be “interacting” with the 
phone between when the screen status is “unlock” and when the screen status is “of” or “lock”. 

4.1.6 Sleep Feature Set. Sleep features were calculated from the sleep inferences (asleep, restless, 
awake, unknown) over time returned by the Fitbit API5. The following features were calculated: 
Number of asleep samples, number of restless samples, number of awake samples, number of 

unknown samples (still detected as sleep), weak sleep efciency (sum of number of asleep and restless 
samples divided by sum of number of asleep, restless, and awake samples), strong sleep efciency 
(sum of number of asleep samples divided by sum of number of asleep, restless, and awake samples), 
count, sum, average, maximum, and minimum length of bouts during which the participant was asleep, 
restless, or awake as well as the start and end time of longest and shortest bouts during which the 
participant was asleep, restless, or awake. We include 3 summary statistics – count, sum, and average 
length of asleep/ restless/ awake bouts as individual features, despite them being dependent on 
each other, because we want to consider the “interaction” between these features6. For example, 
say larger average length per asleep bout and smaller number of asleep bouts correlate with better 
mental health outcomes, the relationship between average length per asleep bout and mental health 
may still be dependent on the number of asleep bouts. Very high number of asleep bouts could 

5Sleep captured by Fitbit is accurate +/- 45min [16, 19, 44]. 
6Interaction models are commonly used in statistics (see: http://www.medicine.mcgill.ca/epidemiology/Joseph/courses/EPIB-
621/interaction.pdf). For example, let x1 = mean, x2 = count. Then, the interaction term is x1x2 = sum. 
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indicate disturbed sleep or polyphasic hypersomnia, such that even with high average length per 
asleep bout, the mental health outcomes could be poor. 

4.1.7 Steps Feature Set. Steps features were calculated from the step counts over time returned by 
the Fitbit API. The following features were calculated: 

Total number of steps and maximum number of steps taken in any 5 minute period were extracted 
as features. Other features were extracted from “bouts”, where a “bout” is a continuous period of 
time during which a certain characteristic is exhibited. Examples of such features include total 
number of active or sedentary bouts [5], and maximum, minimum, and average length of active or 
sedentary bouts. We also calculated minimum, maximum, and average number of steps over all active 
bouts. A bout is said to be sedentary if the user takes less than 10 steps during each 5 minute 
interval within the bout. As soon as the user takes more than 10 steps7 in any 5 minute interval, 
they switch to an active bout. 

4.1.8 Temporal Slicing. Our temporal slicing approach helps us extract behavioral features from 
diferent time slices. Past work has shown that this approach can better elicit the relationship 
between a feature and depression. For example, Chow et al. [14] found no relationship between 
depression and time spent at home during 4-hour time windows, but they found that people who 
are more depressed tend to spend more time at home between 10:00 AM and 6:00 PM. Similarly, 
Saeb et al. [59] found that the same behavioral feature calculated over weekdays and weekends can 
have a very diferent efect on depression. 
Each feature described in Sections 4.1.1–4.1.7 was extracted from 45 temporal slices or time 

segments as illustrated in fgure 2. First, we fetched all available data (spanning over multiple days 
of the study) from a certain epoch or time of the day (all day, night i.e., 12am-6am, morning i.e., 
6am-12pm, afternoon i.e., 12pm-6pm, evening i.e., 6pm-12am) and for certain days-of-the-week (all 
days of the week, weekdays only i.e., Monday-Friday, weekends only i.e., Saturday-Sunday). Then, 
we calculated features from this data aggregated over diferent levels of granularity (whole semester, 
two halves of the semester, weekly). Since there are 5 epochs, 3 days-of-the-week segmentations, 
and 3 levels of granularity, we get 5 × 3 × 3 = 45 time slices. Each location feature is calculated 
over these 45 time slices. Note that the two halves of the semester are not perfect halves. For 
simplicity, we refer to weeks 1-6 as the frst half (before midterms) and weeks 7-16 (midterms and 
after midterms) as the second half. We also investigated the efect of removing the spring break 
weeks (week 8 and 9 as the spring break was mid-week 8 to mid-week 9) on detecting the two 
outcomes, and while our fndings were inconclusive, this may be worthy of future study. 

Fig. 2. For each sensor, each feature was extracted from 45 time slices. First, raw data from the device sensor 
was preprocessed and then filtered by an epoch and a days-of-the-week option. Features (Let NS be number 
of features derived from each sensor) were then extracted from the selected raw data according to 3 levels of 
granularity – per semester (NS features), per half-semester (2 ∗ NS features), and per week (16 ∗ NS features). 

7A threshold of 10 steps is often used to ignore ‘false steps’ [61, 69]. Previous work has also used 10 steps as a threshold to 
detect sedentary behavior [36, 70]. 
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4.1.9 Behavioral Change Features. Behavioral change features capture changes in behaviors over 
16 weeks. These features can be abstractly characterized as the change in slope for each behavioral 
feature over the semester. For this purpose, we only use features computed weekly (i.e., using 
granularity “weeks”). This gives us 15 time slices (for 5 epochs × 3 days-of-the-week options) for 
which we have weekly values of every behavioral feature described in Sections 4.1.1–4.1.7. We 
compute the behavioral change feature for each behavioral feature using their weekly values over 
16 weeks. We follow the same method employed by [75], to test whether their approach works on 
our dataset: 

• Slope: We ft a linear regression model to the values of the feature over 16 weeks. “Slope” is 
the slope of this linear regression line. 

• Slope frst half and second half: We ft two separate linear regression models to the values of 
the feature over weeks 1-6 (i.e., before midterms) and weeks 7-16 (i.e., midterms and after 
midterms) of the semester. “Slope frst half” and “Slope second half” are the slopes of these 
linear regression lines. 

• Breakpoint: Each student’s breakpoint is the week after which the student’s behavior (repre-
sented by the feature value) begins to change. This is calculated by ftting a piecewise linear 
regression model with two segments with each of the 16 weeks as a breakpoint. “Breakpoint” 
is the week that when used as a breakpoint gives the best model as determined by Bayesian 
Information Criterion (BIC). 

• Slope before and after Breakpoint: A piecewise linear regression model with two segments is 
ft to the feature values over 16 weeks with the fnal “Breakpoint”. The slope of the frst line 
segment is “Slope before Breakpoint” and the slope of the second line segment is the “Slope 
after Breakpoint”. 

4.1.10 Defining the Feature Matrix. After feature extraction we obtain a feature matrix for each of 
the seven feature sets derived from diferent sensors, as well as their behavioral change counter-
parts (i.e., 14 feature matrices in total). In each of these feature matrices, each sample or record 
contains features extracted from 1 student. We aggregate our features over diferent timeslices 
(see section 4.1.8) – over diferent weeks, in the two ‘halves’ of the semester, and across the whole 
semester. The features from all these time slices are concatenated to form the feature vector for 
each student. By investigating features from individual weeks, we aim to capture the variability in 
a person’s behavior in diferent time periods. For example, the midterm week may have a greater 
impact on depression than the Spring break week. 

4.2 Handling Missing Features 
Missing features are the result of missing data. While we occasionally miss data from all sensors 
due to non-semantic reasons (i.e., technical issues such as the phone/ app stopped working, the data 
was not transferred on time, or the server was down, and compliance-related issues such as the 
user withdrew permissions for the app), we often miss data due to semantic reasons. For example, 
if the user does not sleep at all during a time period, we will get no sleep data. If the user does 
not make any calls during a time period, we will get no calls data. Hence, instead of completely 
ignoring missing data, since we do not know if it was not collected or whether it did not exist to be 
collected, we have tried to encode it in our features. 

A feature (i.e., feature value during a temporal slice) being missing for a large number of people 
can indicate non-semantic issues such as server-side problems. Hence, we excluded all features 
that were missing for more than 30 participants. Further, a participant missing a very large number 
of features can indicate non-semantic issues such as the phone/ app not working, or that they 
withdrew permissions. Hence if a participant was missing more than 20% of all features from a 
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feature set, we removed that participant. The “30 participants” and ”20% features” thresholds were 
determined empirically by plotting the number of participants and features remaining for diferent 
threshold values and observing where the curve falls of. All the remaining missing features were 
imputed as “-1” as their “missingness” may be due to semantic reasons and can be useful information 
for the classifer. The same features calculated over diferent time slices were viewed independently, 
such that if a feature was missing for a week for over 30 people, we only removed that feature from 
that week. In the end, we were left with roughly 79-110 participants and thousands of features for 
every feature set. The exact numbers were diferent across feature sets as missing features in each 
feature set were handled separately. That is, a participant was excluded from a feature set only if 
they were missing 20% or more of the total number of features in that feature set. 
Appendix A analyzes the ‘missingness’ of features. 

4.3 Modeling 

We use machine learning to build detection models for depression. Our modeling approach consists 
of the steps below, each using leave-one-out cross-validation to minimize over-ftting. That is, we 
train a separate model to detect an outcome for each participant, and that model does not include 
the participant in question, during feature selection or training. It is important to remember that 
each sample contains features from 1 participant only (recall section 4.1.10), such that leave-one-out 
or leave-one-sample-out is actually leave-one-person-out. 
Our model generation process uses the following steps: 
(1) Stable Feature Selection using Randomized Logistic Regression while leveraging the semantic 

structure of the temporal slices (section 4.3.1). 
(2) Training and Validating 1-Feature Set Models for each of the seven feature sets: Bluetooth, 

Calls, Campus Map, Location, Phone Usage, Sleep, and Steps (section 4.3.2). 
(3) Obtaining the Final Label for the Outcome by combining detection probabilities from 1-feature 

set models (section 4.3.3). 
(4) Classifying Diferent Outcomes by slightly modifying the pipeline to detect post-semester 

depression, and change in depression (section 4.3.4). 
We describe these steps in the following sections. 

4.3.1 Feature Selection. After handling missing data, we have 79-110 people (depending on the 
sensor used) and thousands of features for each feature set. So, the sample size is very small in 
comparison to the number of features. Hence, feature selection is a crucial step of the pipeline. 
Moreover, it is essential to select stable features, that is the set of selected features should remain 
stable when we remove or replace a small number of people. For this purpose, we tried a number of 
feature selection methods8 but all of them selected unstable features. That is, the features selected 
greatly varied across cross-validation folds. 

Randomized Logistic Regression [46] is a method that creates several random subsamples of the 
training dataset (200 in our case), computes a logistic regression on each subsample, and selects 
features by optimizing their importance across all subsamples. That is, a feature is selected if the 
average of its logistic regression coefcients across all subsamples is above a specifed selection 
threshold, which is treated as a model parameter and tuned during cross-validation. This usually 
results in a stable set of selected features. However, in our case, since the number of features in 
each feature set is signifcantly larger than the sample size, randomized logistic regression also did 
not work. 

8We selected features using recursive feature elimination or that give k highest scores from the model, p-values below alpha 
based on a FPR test, p-values below alpha based on ANOVA test, and p-values below alpha based on Pearson’s correlation. 
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To address this problem, we decomposed our feature space for each feature set (e.g., for bluetooth) 
by grouping features from the same time slices, and performed randomized logistic regression 
on each of these groups. The selected features from all groups (i.e., all time slices) were then 
concatenated to give a new and much smaller set of features. Then, randomized logistic regression 
was performed again, this time on this new set of features to extract the fnal selected features 
for the feature set, thereby nesting the process. We call this method Nested Randomized Logistic 
Regression9, and used it to extract selected features for each of the seven 1-feature set models. 
This method was performed in a leave-one-out manner such that the model used to detect an 

outcome for a person did not include that person during the feature selection process. 

4.3.2 Training and Validating 1-Feature Set Models (Model Selection and Tuning). For each feature 
set, we built a model of the selected features from that feature set to detect an outcome. We 
used leave-one-out cross-validation (same as leave-one-person-out – see section 4.1.10) to choose 
the model and parameters for that model. We tried two types of learning algorithms – Logistic 
Regression and Gradient Boosting Classifer. Logistic Regression was tried because our feature 
selection approach was based on Logistic Regression, while Gradient Boosting was tried because it 
can perform well on a noisy dataset, learn complex non-linear decision boundaries via boosting 
and has been efectively used to detect similar outcomes in previous work [76]. We chose the model 
and model parameters using accuracy as a metric for post-semester and change in depression. The 
chosen 1-feature set model gave us detection probabilities for each outcome label. 

4.3.3 Combining Detection Probabilities from 1-Feature Set Models to Obtain Combined Models. 
The detection probabilities from all seven 1-feature set models were concatenated into a single 
feature vector and given as input to an ensemble classifer, i.e., AdaBoost with Gradient Boosting 
Classifer as a base estimator, which then outputted the fnal label for the outcome. For post-semester 
and change in depression, only the detection probabilities of class label “1” were concatenated. 
The “n_estimators10” parameter was tuned during leave-one-out cross-validation to get the best 
combined model. 

We also carried out a feature ablation study to analyze the efect that diferent feature sets have 
on the performance of the models, thereby understanding their salience. For this purpose, we 
concatenated detection probabilities from specifc 1-feature set models instead of all seven 1-feature 
set models. We do this for all possible combinations of 1-feature set models, in order to analyze the 
usefulness of each feature set. There are seven 1-feature set models and 120 combinations of feature 
sets, as total combinations = combinations with 2 feature sets + ... + combinations with 7 feature Í7 �7� sets = = 120.r =1 r 

4.3.4 Classifying Diferent Outcomes. The pipeline described in the sections above was used to 
detect two outcomes – post-semester depression, and change in depression. 
(1) Post-semester Depression (Binary – “depression” or “no depression”): We used the pipeline as 

described above without excluding any students and using accuracy as the metric for model 
selection and tuning. 

(2) Change in Depression (Binary – “depression level did not worsen” or “depression level wors-
ens”): We used the pipeline as described above without excluding any students and using 
accuracy as the metric for model selection and tuning. 

9Best (Fs ) = sel (concatenate[sel (Fs1), sel (Fs 2), ..., sel (FsT )]) where Fsi = features from feature set s and time slice 
i (e.g. calls features from the mornings on weekdays calculated weekly), T = total number of time slices, and sel (...) is the 
Randomized Logistic Regression Function. T = 45 for regular feature sets and T = 15 for behavioral change feature sets. 
Best (Fs ) are the fnal features selected from feature set s and are given as input to the 1-feature set model for feature set s . 
10The maximum number of estimators at which boosting is terminated. 
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4.3.5 Prediction Models for Predicting Future Depressive Symptoms. Being able to predict post-
semester depression and change in depression, using data from a limited number of weeks from 
the beginning of the semester can help us identify students at-risk for depression and get them 
treatment early. For each week, we trained 1-feature set models on features from the beginning of 
the semester to the end of that week, and combined all available 1-feature set models to obtain the 
fnal outcome label for that week. 
To understand this clearly, it is important to recall (from section 4.1.10) that we only have 1 

sample per person and the sample or feature vector for each person contains features averaged 
over diferent levels of granularity – each week, each half-semester, and the full semester. So when 
we exclude a week from our analysis, we exclude all features averaged over that week as well 
as features averaged over the full semester and the half-semester that that week belongs to. For 
example, in week 1, the feature vector for each person will only contain features averaged over 
week 1. Whereas, for week 15, the feature vector for each person will contain features averaged 
over each week from week 1 to 15, as well as features averaged over the frst half of the semester. 
Model parameters were tuned at each time step for all these models. 
Canzian and Musolesi [11] investigated the possibility of predicting depression 1-14 days in 

advance using location features, and achieved acceptable results 13-14 days in advance. In fact, 
they obtained very similar results at diferent time points in their analysis. For example, results 
obtained 13 days in advance were as good as the results obtained 0 days in advance (see Figure 9 
of [11]). Based on their results, we hypothesize that we do not need data from 16 weeks to predict 
depression, and we do not expect the prediction accuracy to monotonically increase as we add 
features from subsequent weeks. Even though our detection model contains all the features from the 
previous weeks’ prediction models, we hypothesize that it is possible for some prediction models 
to outperform the detection model since feature selection in machine learning is rarely optimal. 
Features from certain weeks can add “noise” to the model and reduce the accuracy obtained after 
those weeks. For example, students may deviate from their regular behavior during weeks 6-9 
which include preparing for midterm exams, and spring break, and weeks 15-16 which include 
submitting fnal projects and preparing for fnal exams. 

5 RESULTS 

In this section, we present our results. First, we report descriptive statistics about the prevalence of 
depression in our sample of college students. Then, we report the results obtained. It is important 
to note that none of our models contained pre-semester depression scores or labels as features. 

5.1 Descriptive Statistics 
As mentioned in section 3.2, the four severity levels of depression specifed by BDI-II are symptoms 
refecting no or minimal depression (score 0-13), mild depression (score 14-19), moderate depression 
(score 20-28), and severe depression (score 29-63). At the beginning of the semester, 14.5% i.e., 20 out 
of the 138 participants who completed the study were categorized as having mild (13 participants), 
moderate (5 participants), or severe (2 participants) depression. At the end of the semester, this 
number signifcantly increased to 40.6% i.e., 56 out of the 138 participants were categorized as 
having mild (25 participants), moderate (19 participants), or severe (12 participants) depression 
(see fgure 3). While the number of students with depression almost tripled by the end of the 
semester, the post-semester depression rate is comparable to the 33% estimated by the American 
Psychological Association11  for US universities. So, depression statistics at the study University are 
not surprising or unusual. 

11http://www.apa.org/monitor/2014/09/cover-pressure.aspx 
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Fig. 3. Shows how depression status (“no dep.” vs “dep.”) changed from pre to post-semester. 

On comparing BDI-II scores from the beginning and end of the semester, we found that the 
scores of 23 people improved by an average of 2.8, the scores of 99 people got worse by an average 
of 8.7, and the scores of 16 participants did not change at all. However, on comparing depression 
severity levels (thresholded scores) from the beginning and the end of the semester, we found that 
none of the 23 people showed improvement signifcant enough to improve their depression severity 
levels. So, the depressive severity levels of none of the participants got better. In fact, depression 
severity levels did not worsen for 65.9% i.e., 91 out of 138 participants, while they worsened for 
34.1% i.e., 47 participants. 

5.2 Detecting Post-semester Depression 

Figure 4a shows accuracies obtained by the seven 1-feature set models, the 7-feature sets model, 
and the best set model for detecting post-semester depression (i.e., “depression” vs. “no depression”). 
The 7-feature sets model is obtained by combining all seven feature sets, while the best set model is 
the model that gives us the best accuracy out of the 120 diferent combinations of feature sets tried 
during the feature ablation study. The number of people (i.e., sample size N) may be diferent for 
models containing diferent feature sets since handling missing features for diferent feature sets 
will remove a diferent number of people from the analysis. 

If we detect all students as having “no depression” (majority class), we obtain an accuracy of 59.4% 
(baseline) for detecting post-semester depression. The 7-feature sets model was signifcantly better 
than this baseline (using McNemar Test [21, 72], 2 X  = 10.1 and p < 0.01) and obtained accuracy of 
82.3% (N = 79). The best accuracy obtained using a 1-feature set model was 70.3% (N = 111) using 
“Phone Usage”. The best set accuracy was 85.7% (N=84) obtained using a model containing 4 feature 
sets: “Bluetooth”, “Calls”, “Phone Usage”, “Steps” from the feature ablation study (see appendix D). 
The best set model signifcantly outperformed the baseline (using McNemar Test [21, 72], 2 X  = 
13.4 and p < 0.01), but its performance was not signifcantly better than the 7-feature sets model 
(using McNemar Test [21, 72], 2 X  = 0.5 and p = 0.48). 

We found that behavioral features are better than behavioral change features for detecting post-
semester depression. Hence, we only use behavioral features to detect post-semester depression. 
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(a) Detecting Post-semester Depression. Best 1-feature set model contains {Phone Usage}. 
Best set model contains {Bluetooth, Calls, Phone Usage, Steps}. 

(b) Detecting Change in Depression. Best 1-feature set model contains {Campus Map}. 
Best set model contains {Bluetooth, Campus Map, Phone Usage, Sleep}. 

Fig. 4. Shows accuracies and F1 scores obtained for detecting (a) Post-semester Depression, and (b) Change 
in Depression. Accuracies and F1 scores are reported for 1-feature set models, the 7-feature set model i.e., 
model combining detections from all feature sets (“All 7”), and the best set model i.e., the model that gives us 
the best accuracy during the feature ablation study and thus contains the best set of feature sets (“Best set”). 
F1 score for (a) is the F1 score of the “depression” class, and F1 score for (b) is the F1 score of the “worsens” 
class. 
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The behavioral change features were calculated using the method employed by [75] that assumed 
that the weekly features have a linear relationship. It is possible that these features don’t work well 
on our dataset because the linearity assumption is false. Therefore, future work should investigate 
other methods that do not assume linearity for calculating behavioral change features. 

5.3 Detecting Change in Depression 

Figure 4b shows accuracies obtained by the seven 1-feature set models, the 7-feature sets model, 
and the best set model for detecting change in depression (i.e., “did not worsen” vs. “worsens”). 
If we detect all students as “did not worsen” (majority class), we obtain an accuracy of 65.9% 

(baseline) for detecting change in depression. The 7-feature sets model was marginally signifcantly 
better than this baseline (using McNemar Test [21, 72], 2 X  = 3.6 and p = 0.06) and obtained an 
accuracy of 75.9% (N = 79). The best accuracy obtained using a 1-feature set model was 79.1% (N 
= 110) using “Campus Map”. The best set accuracy was 85.4% (N = 82) obtained using a model 
containing 4 feature sets: “Bluetooth”, “Campus Map”, “Phone Usage”, and “Sleep” from the feature 
ablation study (see appendix D). The best set model signifcantly outperformed the baseline (using 
McNemar Test [21, 72], 2 X  = 12.4 and p < 0.01) and the 7-feature sets model (using McNemar 
Test [21, 72], 2 X  = 4.5 and p < 0.05). 

We found that behavioral features are better than behavioral change features for detecting 
post-semester depression. Hence, we only use behavioral features to detect change in depression. 

5.4 Early Prediction of Future Depressive Episodes 
This section describes initial results obtained for predicting future depressive episodes using data 
from the beginning of the semester up to a certain number of weeks until the prediction point. It 
addresses the question “How early can we predict the two outcomes and with what accuracy?” 
Figure 5 contains 2 sub-fgures, corresponding to our two outcomes. In each graph on the left 

side, the horizontal axis indicates the week up to which features are included in a model and 
the vertical axis indicates the accuracy and F1 score that the model obtains. For example, “7” on 
the horizontal axis means we include features from the start of week 1 to the end of week 7, and 
the corresponding value on the vertical axis indicates the accuracy a model trained on features 
from weeks 1 to 7. The best 5 models (with highest accuracies) are labeled. We combine all seven 
1-feature set models at each time step, and tune model parameters for them. As mentioned in 
4.1.10, we concatenate features from diferent weeks in order to capture the variability in behaviors 
across weeks. In the graphs on the right side, at each time step, we take the predictions for every 
participant made by all models up to that time step (as shown in the graph on the left side) and use 
majority voting to determine the fnal prediction for every participant. For example, if at least 50% 
of the models at weeks “1”, “2”, and “3” predict a participant p as “may have depression”, only then 
will participant p be labeled as “may have depression” in week 3. The graphs on the right side show 
the fnal performance obtained when majority voting is applied to the predictions of the models 
whose performance is shown in the graphs on the left side. 

As explained in section 4.3.5, for the graphs on the left side, we do not see the prediction 
accuracy monotonically increase as we add features from subsequent weeks. This is expected and 
also aligned with previous work [11]. In fact, these prediction models (trained on features from 
fewer weeks) sometimes outperform the corresponding detection model (trained on features from 
all weeks) because feature selection in machine learning is rarely optimal. Further, these weeks 
also have semantic meaning, such that adding data from certain weeks can increase predictive 
power or introduce noise, thereby afecting accuracy. For example, students have midterms from 
the beginning of week 7 and 1-2 days into week 8, and spring break during the remainder of week 
8 and most of week 9. They typically return to school towards the end of week 9, and weeks 10 
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and 11 are their frst two weeks of regular schoolwork after spring break. While we know what 
happens in these weeks and our prediction accuracy in the following sections peaks and drops for 
specifc weeks, we cannot associate causality to these results since we do not have any ground 
truth to support such fndings. For example, while most students should have midterms in week 7 
or the frst 1-2 days of week 8, we don’t know the specifc days they had their midterms and there 
may be students who had no midterms at all. 
The instability of model performance across weeks makes it harder for the university staf 

carrying out interventions to trust the output of the model in any one week. Hence, we propose 
that university staf should look at the predictions from all models previously trained before each 
time step, and contact participants that are repeatedly labeled as at-risk. Mathematically, this can be 
achieved using majority voting. In fgure 5, the graphs on the right side show that after majority 
voting, performance of the models greatly stabilizes across the 16 weeks. Hence, instead of trusting 
the output of the prediction model from a specifc week, we recommend that the university staf 
contact at-risk participants every week as long as they have been predicted as at-risk by at least 
50% of the models trained until that week. 

5.4.1 Predicting Post-semester Depression. The baseline for predicting post-semester depression 
is 59.4% (see section 4a). Out of the fve best prediction models, the model which allows for the 
earliest prediction needs data from weeks 1 to 5 and achieves an accuracy of 81.3% (N = 80), as 
shown in fgure 5a (left). Hence, we are able to predict post-semester depression with an accuracy 
signifcantly better than the baseline as early as the end of week 5. In fgure 5a (right), we see 
that the performance of the prediction models increases quite steadily across the 16 weeks when 
using majority voting. Therefore, contacting at-risk participants that were labeled as “may have 
depression” by at least 50% of the models trained until the end of each week, is more reliable and 
can be repeated every week. 

5.4.2 Predicting Change in Depression. The baseline for predicting change in depression is 65.9% 
(see section 5.3). Out of the fve best prediction models, the model which allows for earliest prediction 
needs data only from weeks 1 to 2 and achieves an accuracy of 88.1% (N = 84), as shown in fgure 5b 
(left). Hence, we are able to predict change in depression with an accuracy signifcantly better than 
the baseline as early as the end of week 2. In fgure 5b (right), we see that when using majority 
voting, the performance of the prediction models increases quite steadily across the 16 weeks, with 
weeks 7 and 9 being the only exceptions12. Therefore, contacting at-risk participants that were 
labeled as “depression may worsen” by at least 50% of the models trained until the end of each 
week, is more reliable and can be repeated every week. 

6 DISCUSSION 

In this section, we discuss our observations about the selected features, compare our approach with 
existing ML approaches, and discuss the implications of longitudinal studies, interventions, privacy 
and technical limitations, and combining daily behaviors with verbal and non-verbal behaviors and 
genomic data. 

6.1 Observations about Selected Features 
We made some interesting observations when we informally analyzed the features selected by the 
best 1-feature set models for detecting each outcome. For this purpose, we took features that were 
selected in at least one fold, and made diferent graphs to visualize how many of them came from 
each feature type, week, epoch, and days-of-the-week. For both outcomes, there is a signifcant 

12The drop in performance in weeks 7 and 9 is probably due to atypical behavior during midterms and spring break. 
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(a) Accuracy and F1 over time for predicting Post-semester Depression using data from limited 
number of weeks starting at the beginning of the semester. 

(b) Accuracy and F1 over time for predicting Change in Depression using data from limited number 
of weeks starting at the beginning of the semester. 

Fig. 5. Accuracies over time obtained when predicting (a) Post-semester Depression, and (b) Change in 
Depression using data from a limited number of weeks starting at the beginning of the semester (week 1 
to week x). In the graphs on the lef side, for each time step, detections from all available feature sets are 
combined to get the corresponding accuracy. In the graphs on the right side, at time step x , majority voting 
is used on predictions from models at weeks 1 to x (shown on the lef) to obtain more stable performance 
across the 16 weeks. 

negative correlation between week number and the number of features selected from each week 
(post-semester depression: r = -0.94 and p < 0.0001, and change in depression: r = -0.73 and p < 
0.0020). That is, more features are selected from earlier weeks and fewer features are selected 
from later weeks. For all feature sets except sleep and steps, features from nights are selected 
less often.We interpret this to mean that the participants’ social context at night captured using 
bluetooth, calls, campus map, and location, and their phone usage at night are not predictive of 
depression. For post-semester depression and change in depression, the most frequently selected 
features for Bluetooth, calls, and campus map come from afternoons and evenings, and the most 
frequently selected features for phone usage come from the “all day” epoch. We interpret this to 
mean that the participants’ social context in the afternoons and evenings13 is the most predictive of 
depression and change in depression, while their phone usage throughout the day is more predictive 
of depression and change in depression than their phone usage during specifc times of the day. 
For both outcomes, selected Bluetooth features are related to the devices of “others” and features 
related to devices of “self” are rarely selected. This shows that the Bluetooth features we calculate 
to encode proximity to “others” are able to successfully capture depression. Our study is also the 
frst to use Bluetooth features to detect depression. Features such as maximum length of sedentary 
bouts from steps, maximum length of awake bouts during sleep, time spent in green spaces were 
most frequently selected for post-semester depression and change in depression. This shows that 
13Bluetooth, calls, and campus map features from the afternoons and evenings likely refect social context, as the subjective 
‘number of social interactions’ (in-person and otherwise) reported by participants during weeks 1, 7, and 15, are signifcantly 
more in the afternoons and evenings than in the mornings. 
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long periods of time with no exercise, periods of disturbed sleep at night, as well as time spent 
outdoors are some of the features that are most predictive of depression and change in depression. 

The signifcant negative correlation between weeks and features selected from each week explains 
why we are able to achieve an accuracy of >80% very early in the semester using our prediction 
models, thus enabling depression prevention early in the semester. 
Above, we lightly refected on the features selected, because very little is known about the 

relationship between behavior in the wild and depressive symptoms. Most previous work in 
this space has only looked at behavior in the therapist’s ofce or behavior self-reported by the 
participants in retrospect. Hence, validating these features will require qualitatively analyzing 
participant and clinician experience, which is beyond the scope of this project. That said, the above 
fndings should help explain some of the selected features. To do more would be speculative. 

We
6.2 Comparison with Other Machine Learning Approaches 

 compared the results obtained by our novel ML pipeline with two baseline methods – K-Nearest 
Neighbors and Lasso14. For both these methods, we detected Post-semester Depression using 
models trained on each feature set as well as a model trained on all feature sets. Table 2 shows 
that our method outperformed both these methods for almost every 1-feature set model and for 
the “all” feature sets model. Comparing the average number of feature selected across all folds, 
reveals that our method selected a smaller number of features than the other two methods. That is, 
our feature selection approach is more stringent and selects more meaningful features from a large 
set of features that may often be correlated, as compared to traditional approaches. Our method 
outperforms traditional approaches for the following reasons: 

(1) Selecting Stable Features by Using Randomized Logistic Regression: Randomized Logistic Re-
gression selects features by performing Logistic Regression on several subsamples of the 
training data and selecting features that perform the best across most subsamples. This 
method leads to more 15 a  stable  and useful set of selected features as it reduces overftting 
by diversifying the training samples. This method and its adaptations hence work well for 
highly dimensional feature spaces [78, 80]. 

(2) Reducing Correlation Between Features During Training by Decomposing the Feature Space Using 
Data Sources and Temporal Slices: Some existing ensemble classifcation methods partition 
the feature space into smaller subsets using various techniques, learn separate models for 
each subset, and combine their predictions to get the fnal prediction. Partitioning the feature 
space can reduce correlation between features and further diversify the training data that 
each model is trained on, thereby improving performance [10, 26, 48, 54, 57]. Leveraging the 
same idea, we decompose the feature space and learn separate 1-feature set models for each 
data source (e.g., Bluetooth, Location) because we expect diferent data sources to contain 
overlapping and correlated behavioral information. For example, step counts (and features 
derived from step counts) will usually be low when location variance is low. Further, for 
each 1-feature set model, our novel feature selection approach applies randomized logistic 
regression on subsets of features from diferent temporal slices (see section 4.3.1). We do this 
because features from the same data source can correlate across diferent temporal slices. For 
example, a person with low physical activity may have low step count related features in 
several temporal slices. 

14Lasso performs regression. We apply use threshold of 0.5 on the score returned by Lasso to achieve binary outcomes. 
15Features are said to be ‘stable’ when they don’t vary greatly across folds or with minor perturbations of the training data. 
There is no defnite method of quantifying stability. 

, Vol. 1, No. 1, Article . Publication date: September 2020. 



23 
Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by 
Passive Sensing: A Machine Learning Approach With Robust Feature Selection 

Hence, our ML pipeline outperforms other approaches by jointly tackling three challenges 
of working with behavioral data – multiple modalities (i.e. collected from various data sources), 
high dimensionality with correlated features, and small sample sizes (resulting from logistical and 
privacy-related limitations during data collection). 

Table 2. Comparing our method for detecting Post-semester Depression with 2 Baselines – K-Nearest 
Neighbors and Lasso. Our method performs beter than the two baselines for all feature sets by employing a 
more stringent and robust feature selection strategy that consistently selects fewer but useful features. 
KEY – “N”: Sample Size, “F1”: F1 score of the "depression" class. 

Feature Set N Total Fea-
tures 

Method Model Parameters Accuracy F1 No. of Features 
Selected (avg. 
across folds) 

Bluetooth 114 3202 
KNN K=2 53.5 .18 N/A 
Lasso Alpha=0.7 60.5 .52 229 
Our Method NRL (C=0.5, scaling=0.5, sample_fraction=0.80, se-

lection_threshold=0.20) 
Model = GBC 

69.3 .64 73 

Calls 108 606 
KNN K=1 58.3 .46 N/A 
Lasso Alpha=1.0 55.6 .33 57 
Our Method NRL (C=0.5, scaling=0.7, sample_fraction=0.80, se-

lection_threshold=0.80) 
Model = LogR (C=0.5 - same as NRL) 

68.5 .59 7 

Campus Map 110 23873 
KNN K=8 61.8 .46 N/A 
Lasso Alpha=0.9 57.3 .53 140 
Our Method NRL (C=0.3, scaling=0.5, sample_fraction=0.80, se-

lection_threshold=0.20) 
Model = GBC 

68.2 .66 63 

Location 105 10238 
KNN K=7 61.9 .56 N/A 
Lasso Alpha=0.3 50.5 .46 513 
Our Method NRL (C=0.35, scaling=0.5, sample_fraction=0.85, 

selection_threshold=0.60) 
Model = LogR (C=0.35 - same as NRL) 

69.5 .62 10 

Phone Usage 111 15447 
KNN K=8 60.4 .35 N/A 
Lasso Alpha=0.3 47.7 .37 261 
Our Method NRL (C=0.6, scaling=0.5, sample_fraction=0.80, se-

lection_threshold=0.50) 
Model = GBC 

70.3 .75 3 

Sleep 107 5890 
KNN K=10 49.5 .41 N/A 
Lasso Alpha=1.0 44.9 .34 282 
Our Method NRL (C=0.6, scaling=0.45, sample_fraction=0.80, 

selection_threshold=0.20) 
Model = GBC 

69.2 .66 74 

Steps 107 3055 
KNN K=9 66.4 .50 N/A 
Lasso Alpha=0.3 62.6 .57 305 
Our Method NRL (C=0.75, scaling=0.6, sample_fraction=0.80, 

selection_threshold=0.20) 
Model = LogR (C=0.75 - same as NRL) 

63.6 .53 80 

All 79 
62311 

KNN K=3 64.6 .58 N/A 
Lasso Alpha=0.7 59.5 .53 480 

Predictions 
from the 
7 feature 
sets 

Our Method Combined predictions from the all seven 1-feature 
set models using AdaBoost (n_estimators=100) 

82.3 .78 310 

6.3 Implications for Longitudinal Studies and Opportunities to Improve Model 
Performance 

Section 2 and table 1 show that our depression detection results are either better than or comparable 
to the current state-of-the-art. Further, our change of depression detection and depression prediction 
extend the current state-of-the-art. However, depression detection and prediction using mobile 
and wearable sensing is a fairly novel area of research, and there are signifcant opportunities to 
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improve the accuracy of our models in future work. To this end, we have identifed two possible 
kinds of sources of errors: (1) Errors that occur due to modeling, and (2) Errors that occur due to 
poor quantity or quality of data collected. Opportunities to mitigate these errors are described 
below. 

The small sample size of our dataset contributes greatly to the errors that occur due to modeling. 
Increasing the sample size for training by collecting data from more people will increase the 
robustness and generalizability of our models and reduce error due to variance (i.e., error due to 
small fuctuations in the training data), thereby improving accuracy. For this study, we started out 
with 188 participants but were left with 138 participants by the end of the study. 50 participants either 
dropped out, failed to answer depression questionnaires, or were missing much of their passively 
collected data due to technical issues. Hence, in order to increase the sample size, researchers 
will have to take a multi-pronged approach by (1) recruiting more participants, (2) encouraging 
compliance and reducing drop-out rates by ofering additional or more engaging incentives (e.g., 
interventions to improve their wellbeing), and (3) improving quantity or quality of data collected. 
Further, some participants may exhibit behavioral symptoms that are diferent from the rest of 
the population. Hence, in the future, researchers should investigate building personal models for 
each participant, such that each personal model contains weekly samples from 1 participant only, 
in order to predict the weekly depression labels for that participant. This kind of study will be 
challenging though, since self-report data will have to be collected over a much longer period of 
time. 
We are currently repeating this study with a new cohort of frst year undergraduate students 

from the same University and a subset of the now second year undergraduate students whose data 
was used in the analysis presented in this paper. This will allow us to compare behaviors from the 
same participants 1 year apart and their efect on depression, as well as build more stable models 
by training on a larger sample size and reporting test accuracies. This study is also being repeated 
at another University which will allow us to compare behavioral symptoms of depression and test 
the validity of our models across universities. These new studies will collect more frequent ground 
truth to allow us to improve and better understand our models for predicting depression in advance. 
We have also signifcantly improved our system and protocol for monitoring data collection daily 
throughout the study, which should greatly improve the quality of data collected. 

To improve the quantity or quality of passively collected data, researchers need to monitor data 
collection daily and promptly address technical issues that cause noisy or missing data, as they 
arise. To this end, we have implemented a dashboard that shows us the amount of data received 
by the server from each participant daily. This allows us to reach out to participants and resolve 
data collection or data transmission issues that are causing missing data. In addition, eforts to 
encourage compliance and reduce drop-out rates will help improve the quantity or quality of data 
collected through questionnaires. 

6.4 Implications for Interventions 
Our machine learning approach enables building behavior models for early detection and prediction 
of change in depression without frequent ground truth data. This provides opportunities for timely 
interventions and treatments. We have discussed the implications of this work with mental health 
experts. They seem very excited about this research as they believe that this system can help them 
screen students for depression more efciently. They also want to help us take this research forward 
by identifying modifed behaviors that can be targeted during behavioral change interventions 
to improve depressive symptoms. In our sample of 138 participants, 40.6% students were found 
to have depressive symptoms post-semester, however only 17.4% students self-reported seeking 
counseling and psychological services. In subsequent studies with in-built interventions, we plan 
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to use our system to identify students with depression and reach out to them through the student 
counseling center. Detecting post-semester depression allows us to identify students who may 
have a depressive disorder at the end of the semester. Detecting change in depression allows us to 
identify students who have worsened, such that we can intervene urgently and more aggressively if 
needed. Models for detecting change in depression may also be more sensitive to changes resulting 
from interventions, and hence, better at evaluating their efectiveness. Further, since our models 
are understandable, that is, they are built using meaningful behavioral features, they can be used 
to inform therapists treating students about the relationship between the students’ behaviors 
and depression. As a result, therapists will be able to make more informed choices about which 
interventions would be most efective for each student. Students will also be able to participate 
in technological self-help interventions. For example, students can be shown visualizations of 
their sensed behaviors (features from our model) and their relationship with depression, thereby 
enabling guided self-refection and planning for behavioral change. 
The prediction models that predict post-semester depressive state and change in depression 

weekly, enable us to reach out to students who may be at-risk for depression as early as 1 to 5 
weeks into a semester, in order to execute interventions to preempt depressive symptoms. However, 
we also fnd that the performance of these models trained at the end of each week varies over the 
16 week period, instead of monotonically increasing. While this is expected behavior (and seen in 
previous work [11]) due to the weeks having semantic meaning, it makes it harder for university 
staf carrying out interventions to trust the output of the model at the end of any one week. Hence, 
to address this problem, we carried out additional analysis (i.e., majority voting) and accordingly 
suggest an intervention strategy that utilizes our models. That is, we recommend that instead 
of trusting the output of one model at the end of a specifc week, university staf should contact 
students predicted to be at-risk at the end of each week by a majority of all the models trained 
until that time point. We show that using this strategy would result in more stable accuracy and F1 
values across the 16 weeks of the semester, and can thus be trusted more. 

Detecting and monitoring depression in a large sample of students can also help inform policy 
changes at the university level, such as increasing outreach for psychological services, hiring more 
mental health professionals, and deciding drop deadlines for courses. 

6.5 Implications for Privacy and Technical Limitations 
The results of our feature ablation study show that we do not need data from all the sensor streams 
we recorded. In fact, combining features from fewer sensor streams often leads to better performance. 
For example, for detecting post-semester depression, a model containing features from all 7 sensors 
give us an accuracy of 82.3% while a model containing data from 4 sensors gives us an accuracy 
of 85.7%. This demonstrates an opportunity for algorithms that minimize data collection burden 
(e.g., privacy, data transfer rate) while maximizing value (i.e., model performance metrics like 
accuracy) for detecting mental health outcomes. As an example, consider our detection results. In 
both our detection outcomes, the best set model did not include Location, while for one outcome, it 
did include Campus Map. This means that from a privacy perspective and from a battery usage 
perspective, detailed and granular Location data is not needed, and instead human-understandable 
location (i.e., Campus Map) labels are sufcient for well-performing models. As stated earlier, the 
human cost of obtaining Campus Map and Calls features is higher than for the other feature sets. 
Anyone implementing a detection or prediction system like the ones we have proposed in this 
paper, has to trade of this burden against the loss in accuracy that they might induce (e.g., 3.2% 
loss in post-semester detection, and 8.9% loss in detecting change). Further, any features or feature 
sets that do not contribute to our best models means a reduction in the amount of data transferred 
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from the phone to a back-end server. This also reduces battery usage, and potential fnancial costs 
to the participant depending on the data plan they have paid for. 

To optimize for these types of burdens, Early et al. [28] present a method that dynamically chooses 
sensors and switches between them during data collection, thereby reducing data collection costs 
while achieving equivalent or better model performance. This method can be extended to our work 
in detecting mental health outcomes in college students. 

6.6 Extending to Other Health Outcomes and Opportunities for Combining with 
Verbal and Non-Verbal Behaviors, and Genomic Data 

We evaluated our ML pipeline in the context of depression, but it can be generalized to any chronic 
and longitudinal health problem. Further, depression has temperamental (cognitive), environmental 
(e.g., childhood experiences, lifestyle), and genetic and physiological prognostic and risk factors 
[4, 7]. While we are able to detect depression by sensing daily behaviors, incorporating verbal and 
non-verbal behaviors and genomic data into our model will lead to a more holistic and unifed 
model of depression [7]. This can help us predict depression before its onset more accurately, 
estimate prognosis after onset, and develop a better understanding of depression and its causes, 
thereby enabling more efective treatments and interventions for depression. We can do this by 
capturing cognitive (e.g., negative beliefs [6]) and environmental (e.g., abuse) factors using verbal 
behaviors from ecological momentary assessments [65] and social media posts [18], physiological 
(e.g., response to stress) factors using wearable physiological sensors (e.g., heart rate sensors) 
and hormonal testing (e.g., saliva testing for stress hormones), and genetic factors using genomic 
sequencing. Large initiatives such as the UCLA Depression Grand Challenge16 and the Precision 
Medicine Initiative17 are already working on combining these diferent sources of data to detect and 
understand depression and other health-related outcomes. We plan to contribute to these initiatives 
by open sourcing our feature extraction library which will allow researchers to extract tens of 
thousands of behavioral and behavioral change features from a wide variety of sensor streams. 

7 CONCLUSION 

In this paper, we present a new feature selection approach that allows us to select meaningful 
features even when the number of features is signifcantly larger than the sample size. This approach 
enables models that detect depression at specifc time points while considering a large set of features 
computed over the previous several weeks. We evaluate our approach by identifying students that 
have post-semester depressive symptoms using data collected over one semester (16 weeks) from 
the smartphones and ftness trackers of 138 college students, and achieve an accuracy of 85.7%. 
Further, we detect whether students’ depressive symptom severity changed with an accuracy of 
85.4%, and the levels of change with an accuracy of 82.9%. 
Models that detect change in depression are novel, and will likely be better at evaluating inter-

ventions than diagnostic models. Finally, our work is the frst to demonstrate that it is possible to 
predict depression several weeks in advance with an accuracy of >80% (e.g., 81.3%, 11 weeks before 
the end of the semester). Hence, our work has signifcant implications for depression detection and 
monitoring, prediction before onset, and longitudinal symptom monitoring in-the-wild. Ultimately, 
it creates the potential for technology-mediated interventions that support the diagnosis, treatment, 
and prevention of depression. For example, a system built on data from these sensors can provide 
real-time feedback and alert the user before a depressive episode occurs. Such interventions could 
help increase awareness and motivate students to seek treatment and afect behavior change. 

16https://grandchallenges.ucla.edu/depression/
17https://ghr.nlm.nih.gov/primer/precisionmedicine/initiative 
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In the future, features related to daily behaviors from our work can be combined with features 
related to verbal and non-verbal behaviors, and genomic data to develop a better understanding of 
depression and its causes, predict depression before its onset and prognosis after onset, thereby 
enabling more efective and personalized treatments and interventions for depression. 
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A APPENDIX: QUANTIFYING MISSING FEATURES 

Missing features were handled using 2 steps: 

(1) Exclusion: All features that were missing for more than 30 participants are excluded. Further, 
if a participant was missing more than 20% of all features from a feature set, we removed 
that participant. 

(2) Imputation: The remaining feature matrix still contained some missing cells (i.e. some 
features were missing for certain participants), which were imputed as ‘-1’. 

Table 3 shows the size of the feature matrix (i.e. number of participants * number of features) 
before and after the exclusion step of missing features handling. Missing features in the resulting 
feature matrix (of dimensions N *N Feats_input ) will be imputed as ‘-1’ and this feature matrix will 
be given as input to feature selection and modeling. These missing features are not necessarily 
missing at random, and the ‘-1’ may be semantically meaningful (see section 4.2). 

Figure 6 shows the percentage of imputations i.e. the percentage of cells imputed in the feature 
matrix containing ’All’ features, or the feature matrices fltered by features from each week or each 
epoch. There is one fgure for each feature set. For Bluetooth, Campus Map, Location, and Phone 
Usage, < 5% of the feature matrix was imputed due to missing features. Whereas, for Calls, Sleep, 
and Steps, 5-10% was often imputed due to missing features. There are more missing features for 
Calls because we cannot diferentiate between no calls or the calls sensor not working, and missing 
calls could simply mean that calls were made in that time period. Further, Sleep and Steps have 
increasingly more missing features as the semester progresses, probably because participants fnd 
it harder to wear the Fitbit as the semester progresses due to increased workload and wearing of 
of the novelty efect [66]. Sleep features were also missing more often from the afternoons and 
evenings. No other distinct patterns were seen across the weeks/ epochs. 

Table 3. The extracted (raw) feature matrix had dimensions N _raw*N Feats_raw . Then, all features that were 
missing for more than 30 participants and all participants that had more than 20% missing features were 
excluded. The resulting feature matrix had dimensions N *N Feats_input . 

Before Missing Data Handling After Missing Data Handling But Before Feature Selection 
Feature Set No. of Participants (N_raw) No. of Features (NFeats_raw) No. of Participants (N) No. of Features (NFeats_input) 
Bluetooth 138 4275 114 3202 
Calls 138 2850 108 606 
Campus map 138 26790 110 23873 
Location 138 10830 105 10238 
Phone Usage 138 16815 111 15447 
Sleep 138 12255 107 5737 
Steps 138 3705 107 3055 
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Fig. 6. (contd.) Percentage of missing features (‘cells’) in the feature matrix given as input to feature selection 
and modeling. We filter the feature matrix by week number and epoch (morning, afernoon, evening, and 
night) to see if there is any patern to the ‘missingness’. 
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Fig. 6. (contd.) Percentage of missing features (‘cells’) in the feature matrix given as input to feature selection 
and modeling. We filter the feature matrix by week number and epoch (morning, afernoon, evening, and 
night) to see if there is any patern to the ‘missingness’. 

B APPENDIX: ADDITIONAL EVALUATION METRICS FOR OUR MODELS 

Tables                
and “best” combined detection models, and the earliest of the top-5 combined prediction models 
for each of the two outcomes. 

Tables 6 to 11 present the confusion matrices for the “all” and “best” combined detection models, 
and the earliest of the top-5 combined prediction models for each of the two outcomes. The 
confusion matrix contains the number of true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN). 

Note – N: Number of samples, NS: number of feature-sets combined, NFeats: Avg. number of 
feature selected across all folds from total number of features in feature-set, MCC: Matthews 
Correlation Coefcient, F1: F1-score, P: Precision, R: Recall. 

4 and 5 presents additional evaluation metrics for each 1-feature set detection model, the “all”
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Table 4. Additional evaluation metrics for Post-semester Depression. 

Task and Model N NS/ 
NFeats 

Accuracy F1 
Dep. 

P 
Dep. 

R 
Depression 

F1 
No 
Dep. 

P 
No 
Dep. 

R 
No 
Dep. 

Detection Using 
Bluetooth 

114 73 out of 
3202 

features 
sel. 

69.3 0.64 0.64 0.6 0.72 0.72 0.76 

Detection Using 
Calls 

108 7 out of 
606 

features 
sel. 

68.5 0.59 0.59 0.78 0.8 0.8 0.62 

Detection Using 
Campus Map 

110 63 out of 
23873 
features 
sel. 

68.2 0.66 0.66 0.56 0.7 0.7 0.77 

Detection Using 
Location 

105 10 out of 
10238 
features 
sel. 

69.5 0.62 0.62 0.8 0.8 0.8 0.61 

Detection Using 
Phone Usage 

111 3 out of 
15447 
features 
sel. 

70.3 0.75 0.75 0.45 0.69 0.69 0.89 

Detection Using 
Sleep 

107 74 out of 
5890 

features 
sel. 

69.2 0.66 0.66 0.49 0.71 0.71 0.83 

Detection Using 
Steps 

107 80 out of 
3055 

features 
sel. 

63.6 0.53 0.53 0.55 0.7 0.7 0.69 

Detection Using 
All Feature-Sets 

79 7 feature-
sets 

82.3 0.78 0.78 0.78 0.85 0.85 0.85 

Detection Using 
Best Feature-Sets 

84 4 feature-
sets 

85.7 0.82 0.82 0.82 0.88 0.88 0.88 

Prediction by the 
Earliest of Top-5 

80 7 feature-
sets 

81.3 0.75 0.76 0.73 0.85 0.84 0.86 
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Table 5. Additional evaluation metrics for Change in Depression. 

Task and Model N NS/ 
NFeats 

Accuracy F1 
Dep. 

P 
Dep. 

R 
Depression 

F1 
No 
Dep. 

P 
No 
Dep. 

R 
No 
Dep. 

Detection Using 
Bluetooth 

114 83 out of 
3202 

features 
sel. 

65.8 0.55 0.55 0.27 0.68 0.68 0.88 

Detection Using 
Calls 

108 16 out of 
606 

features 
sel. 

64.8 0.5 0.5 0.39 0.71 0.71 0.79 

Detection Using 
Campus Map 

110 14 out of 
23873 
features 
sel. 

79.1 0.8 0.8 0.59 0.79 0.79 0.91 

Detection Using 
Location 

105 25 out of 
10238 
features 
sel. 

74.3 0.73 0.73 0.49 0.75 0.75 0.89 

Detection Using 
Phone Usage 

111 6 out of 
15448 
features 
sel. 

73.9 0.68 0.68 0.56 0.77 0.77 0.84 

Detection Using 
Sleep 

107 6 out of 
5890 

features 
sel. 

73.8 0.66 0.66 0.63 0.78 0.78 0.81 

Detection Using 
Steps 

107 34 out of 
3055 

features 
sel. 

68.2 0.56 0.56 0.62 0.77 0.77 0.72 

Detection Using 
All Feature-Sets 

79 7 feature-
sets 

75.9 0.67 0.68 0.66 0.81 0.8 0.82 

Detection Using 
Best Feature-Sets 

82 4 feature-
sets 

85.4 0.8 0.83 0.77 0.88 0.87 0.9 

Prediction by the 
Earliest of Top-5 

84 7 feature-
sets 

88.1 0.81 0.92 0.73 0.91 0.87 0.96 
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Table 6. Confusion Matrix for the Model Containing All Sensors for Detecting Post-Semester Depression 

Model Output Label 
No Depression Depression 

True Label No Depression 40 (TN) 7 (FP) 
Depression 7 (FN) 25 (TP) 

Table 7. Confusion Matrix for the Best Set Model for Detecting Post-Semester Depression 

Model Output Label 
No Depression Depression 

True Label No Depression 45 (TN) 6 (FP) 
Depression 6 (FN) 27 (TP) 

Table 8. Confusion Matrix for the Earliest of Top-5 Models for Predicting Post-Semester Depression 

Model Output Label 
No Depression Depression 

True Label No Depression 43 (TN) 7 (FP) 
Depression 8 (FN) 22 (TP) 

Table 9. Confusion Matrix for the Model Containing All Sensors for Detecting Change in Depression 

Model Output Label 
No Depression Depression 

True Label No Depression 41 (TN) 9 (FP) 
Depression 10 (FN) 19 (TP) 

Table 10. Confusion Matrix for the Best Set Model for Detecting Change in Depression 

Model Output Label 
Did not worsen Worsens 

True Label Did not worsen 46 (TN) 5 (FP) 
Worsens 7 (FN) 24 (TP) 

Table 11. Confusion Matrix for the Earliest of Top-5 Models for Predicting Change in Depression 

Model Output Label 
Did not worsen Worsens 

True Label Did not worsen 52 (TN) 2 (FP) 
Worsens 8 (FN) 22 (TP) 
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C APPENDIX: FEATURES SELECTED BY OUR MODELS 

Table 12 lists the features selected in all folds of the leave-one-out feature selection when building 1-
feature set models for detecting post-semester depression and change in depression. These features 
may help inform future research. 

Table 12. Selected features from each 1-feature set model that were given as input to the Association Rule 
Mining (Apriori) algorithm. 

Feature Set Outcome Features Selected in All Folds 
Bluetooth Post-semester ’Average number of scans of all devices of others in the 

afternoons in week 7’, ’Average number of scans of all devices 
of others in the afternoons on weekends in week 1’, ’Average 
number of scans of all devices of others in the afternoons on 
weekends in week 9’, ’Average number of scans of all devices 
of others in the evenings in week 11’, ’Average number of 
scans of all devices of others in the evenings on weekdays 
in week 9’, ’Number of scans of least frequent device in the 
afternoons on weekends in week 1’, ’Number of scans of 
least frequent device in the mornings on weekdays in week 
9’, ’Number of scans of least frequent device in the mornings 
on weekends in weeks 1-6’, ’Number of scans of least frequent 
device in the nights on weekdays in week 14’, ’Number of 
scans of least frequent device of others in the afternoons 
on weekends in week 1’, ’Number of scans of least frequent 
device of others in the evenings on weekdays in week 3’, 
’Number of scans of least frequent device of others in the 
mornings in week 15’, ’Number of scans of least frequent 
device of others in the nights in week 4’, ’Number of scans of 
least frequent device of others in the nights on weekdays in 
week 14’, ’Number of scans of least frequent device of others 
in the nights on weekdays in week 5’, ’Number of scans of 
least frequent device of others in the nights on weekends in 
weeks 1-6’, ’Number of scans of least frequent device of others 
on weekdays in week 3’, ’Number of scans of most frequent 
device of others in week 6’, ’Number of unique devices of self 
in the evenings on weekends in week 2’, ’Number of unique 
devices of self in the evenings on weekends in week 5’ 

Table continued on the next page . . . 
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Table 12 continued from previous page 
Feature Set Outcome Features Selected in All Folds 
Bluetooth Change ’Average number of scans of all devices of others in the 

afternoons in week 7’, ’Average number of scans of all devices 
of others in the afternoons on weekends in week 1’, ’Average 
number of scans of all devices of others in the afternoons 
on weekends in weeks 1-6’, ’Average number of scans of 
all devices of others in the evenings in week 11’, ’Average 
number of scans of all devices of others in the evenings on 
weekdays in week 9’, ’Average number of scans of all devices 
of others in the evenings on weekends in week 4’, ’Average 
number of scans of all devices of others in the mornings in 
week 1’, ’Average number of scans of all devices of others 
in week 7’, ’Number of scans of least frequent device in the 
afternoons on weekends in week 1’, ’Number of scans of least 
frequent device in the mornings in week 3’, ’Number of scans 
of least frequent device in the mornings on weekdays in week 
9’, ’Number of scans of least frequent device in the nights in 
week 15’, ’Number of scans of least frequent device of others 
in the afternoons on weekends in week 1’, ’Number of scans 
of least frequent device of others in the nights on weekdays 
in week 14’, ’Number of scans of least frequent device of 
others in the nights on weekends in weeks 1-6’, ’Number of 
scans of least frequent device of others on weekends in week 
8’, ’Number of scans of least frequent device on weekends in 
week 2’, ’Number of unique devices of self in the afternoons 
on weekends in week 2’, ’Number of unique devices of self 
in the evenings in week 6’, ’Number of unique devices of 
self in the evenings on weekends in week 2’, ’Number of 
unique devices of self in the evenings on weekends in week 
5’, ’Number of unique devices of self on weekends in week 8’, 
’Std number of scans of all devices of others in the afternoons 
on weekdays in week 1’ 

Calls Post-semester ’Number of incoming calls in the evenings in week 13’, ’Num-
ber of missed calls in the evenings in week 1’ 

Calls Change ’Number of incoming calls in the evenings in week 11’, ’Num-
ber of incoming calls in the evenings in week 13’, ’Number 
of incoming calls in the evenings on weekdays in week 5’ 

Table continued on the next page . . . 
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Table 12 continued from previous page 
Feature Set Outcome Features Selected in All Folds 
Campus Map Post-semester ’Maximum bout in residential apartments in the evenings in 

week 12’, ’Maximum bout on-campus in week 11’, ’Minimum 
bout of-campus in the mornings on weekdays in week 14’, 
’Minimum bout in green spaces in the evenings on weekdays 
in week 12’, ’Minimum bout in green spaces in the morn-
ings on weekdays in week 10’, ’Minimum bout on-campus in 
the evenings on weekends in week 14’, ’Minutes in athletic 
faciltiies in the afternoons on weekdays in week 2’, ’Min-
utes in green spaces in the evenings on weekdays in week 6’, 
’Minutes in residential apartments in the evenings in week 
12’, ’Number of bouts 20min or more in residential apart-
ments in the afternoons on weekends in week 10’, ’Number 
of bouts 30min or more in residential halls in the afternoons 
on weekdays in week 14’, ’Percent time in residential halls 
in the nights on weekends in week 8’, ’Std bout in residential 
halls in the afternoons in week 9’, ’Std bout of-campus in 
week 11’ 

Campus Map Change ’Maximum bout in green spaces on weekdays in week 13’, 
’Std bout in residential halls in the afternoons in week 9’ 

Location Post-semester ’Moving time percent in the nights on weekends in week 8’ 
Location Change ’Home stay time percent 100m in the evenings in week 9’, 

’Home stay time percent 100m in the evenings on weekends 
in week 9’, ’Mean length stay at signifcant locations in min-
utes (local clusters) in the afternoons on weekends in week 
12’, ’Number of of signifcant locations in the afternoons on 
weekends in week 12’ 

Phone Usage Post-semester ’Number of times last "unlock" at hour 3 in the mornings on 
weekdays in week 9’ 

Phone Usage Change ’Number of times last "unlock" at hour 3 in the mornings on 
weekdays in week 9’ 

Table continued on the next page . . . 
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Table 12 continued from previous page 
Feature Set Outcome Features Selected in All Folds 
Sleep Post-semester ’Average length bout awake in week 1’, ’End time maximum 

bout asleep in the nights on weekdays in week 2’, ’End time 
maximum bout asleep on weekdays in week 11’, ’End time 
minimum bout restless in the nights in week 12’, ’End time 
minimum bout totalsleep in the nights in week 3’, ’Maximum 
length bout awake in the mornings on weekdays in week 
5’, ’Maximum length bout awake in the nights on weekends 
in week 10’, ’Minimum length bout awake in the nights on 
weekends in week 3’, ’Number of asleep bouts in the morn-
ings on weekdays in week 8’, ’Number of restless bouts in 
the mornings on weekends in week 4’, ’Number of unknown 
instances on weekends in week 12’, ’Start time maximum 
bout asleep in the mornings in week 3’, ’Start time maximum 
bout asleep in the mornings in weeks 1-6’, ’Start time max-
imum bout restless in week 5’, ’Start time maximum bout 
restless on weekdays in week 5’, ’Start time minimum bout 
awake on weekdays in week 7’, ’Start time minimum bout 
restless in the nights in week 12’, ’Weak sleep efciency in 
the nights in week 1’ 

Sleep Change ’Number of awake on weekdays in week 10’, ’Start time 
maximum bout asleep in the mornings in week 3’, ’Sum 
length bout awake on weekdays in week 10’ 

Steps Post-semester ’Average length active bout minutes in the afternoons on 
weekdays in week 6’, ’Average length active bout minutes 
in the evenings on weekends in week 4’, ’Average length 
active bout minutes in the mornings on weekends in week 3’, 
’Average length active bout minutes in the nights on week-
days in week 1’, ’Maximum length active bout minutes in 
the afternoons in week 1’, ’Maximum length active bout min-
utes in the evenings on weekends in weeks 1-16’, ’Maximum 
length sedentary bout minutes in the afternoons in week 6’, 
’Maximum length sedentary bout minutes in the evenings 
on weekdays in week 12’, ’Maximum length sedentary bout 
minutes in the nights on weekdays in week 3’, ’Maximum 
step active bout in the evenings on weekdays in week 2’, 
’Maximum steps in the afternoons in week 3’, ’Maximum 
steps in the nights in week 3’, ’Maximum steps in the nights 
on weekdays in week 2’, ’Number of active bout in the after-
noons on weekdays in week 1’, ’Number of active bout in the 
afternoons on weekends in week 3’, ’Number of sedentary 
bout in the afternoons on weekdays in week 1’, ’Number of 
sedentary bout in the nights in week 11’ 

Table continued on the next page . . . 
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Table 12 continued from previous page 
Feature Set Outcome Features Selected in All Folds 
Steps Change ’Maximum length sedentary bout minutes in the evenings 

on weekdays in week 12’, ’Maximum steps in the afternoons 
in week 3’, ’Minimum length sedentary bout minutes in the 
mornings on weekends in week 10’, ’Number of active bout in 
the afternoons on weekends in week 3’, ’Number of sedentary 
bout in the nights on weekends in week 11’ 

D APPENDIX: FEATURE ABLATION STUDY 

Measuring the salience of each feature set can inform future research and enable depression 
detection models that are optimized for privacy, and technical limitations such as battery life and 
data transfer rate. While fgure 4 indicates how salient or “useful” each feature set is on its own, it 
does not allow us to analyze the salience of a feature set when it is combined with other feature sets. 
It is important to analyze the latter because a feature set may not be signifcantly better on its own 
but can have a signifcant efect on accuracy when present in combination with other feature sets. 
For this purpose, we carried out a feature ablation study (see section 4.3.3). We tried 120 diferent 
combinations of feature sets and obtained their accuracies. Analyzing these results was not trivial. 
For example, we found no pattern in the accuracies of models obtained by removing 1 feature set 
at a time (i.e., 6-feature sets models). Hence, for each feature set, we calculate the average accuracy 
of all models containing it, and report our fndings below. 
Figure 7a shows the average accuracy per feature set for detecting post-semester depression. 

“Phone Usage” (78.2%) has the highest average accuracy, and is closely followed by “Location” 
(75.2%) and “Calls” (75.1%). The feature ablation study also gave us a best set accuracy of 85.7% 
(N=84) using a model containing 4 feature sets: “Bluetooth”, “Calls”, “Phone Usage”, “Steps”. 

Figure 7b shows the average accuracy per feature set for detecting change in depression. “Phone 
Usage” (76.0%) has the highest average accuracy, followed by “Campus Map” (75.2%). Also, a best 
set accuracy of 85.4% (N = 82) was obtained using a model containing 4 feature sets: “Bluetooth”, 
“Campus Map”, “Phone Usage”, and “Sleep. 

Our fndings show that “Bluetooth”, “Phone Usage” and “Location” or “Campus Map” (which 
is calculated using location) are salient across both outcomes. Previous work has repeatedly 
focused on the use of “Location” and “Phone Usage” as the most important sensors [59, 60], 
while “Bluetooth” has mostly been ignored. Our results indicate that “Bluetooth” may also convey 
interesting information and hence, should not be ignored. 

Further, the “Campus Map” and “Calls” feature sets are harder to acquire than the other feature 
sets, since they require the researchers to input a map of the campus and participants to provide 
the phone numbers of their family members and friends. Hence, we are reporting how well our 
approach works without these two feature sets, below. This may help researchers decide if they 
want to exclude these two feature sets in the future. 

The best accuracy obtained for detecting post-semester depression without these two feature 
sets is 82.5% (N = 80), and is obtained using “Bluetooth”, “Location”, “Phone Usage”, “Sleep”, and 
“Steps”. This is slightly lower than the best overall accuracy for detecting post-semester depression 
which was 85.7% (N = 84). The best accuracy obtained for detecting change in depression without 
these two feature sets is 76.5% (N = 81), and is obtained using “Bluetooth”, “Location”, “Phone 
Usage”, and “Steps”. This is signifcantly lower than the best overall accuracy for detecting change 
in depression which was 85.4% (N = 82). 
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(a) Heat map indicating usefulness of sensors for 
detecting Post-semester Depression. 

(b) Heat map indicating usefulness of sensors for 
detecting Change in Depression. 

Fig. 7. Heat maps indicating the salience of feature sets derived from diferent sensors for detecting (a) 
Post-semester Depression, and (b) Change in Depression. For each feature set, we calculate the average 
accuracy of all combinations of feature sets containing that feature set. 

E MODEL PARAMETER TUNING 

To tune model parameters, we did a semi-greedy grid search. For each of the 7 feature sets, we tried 
Logistic Regression (LogR) as well as Gradient Boosting Classifer (GBC). We tune the parameters 
for these two models as follows: 
(1) Take selection_threshold = 0.3, sample_fraction = 0.80, and scaling = 0.5. Vary C = [0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] and choose C = best_C_from_step_1 based on CV accuracy. 
(2) Take C = best_C_from_step_1, sample_fraction = 0.80, and scaling = 0.5. Vary 

selection_threshold = [0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] and choose 
best_selection_threshold_from_step_2 based on CV accuracy. 

(3) Take C = best_C_from_step_1, selection_threshold = best_selection_threshold_from_step_2, 
and sample_fraction = 0.80. Vary scaling = [0.3, 0.4, 0.6, 0.7] and choose 
best_scaling_from_step_3 based on CV accuracy. 

(4) Take C = best_C_from_step_1, selection_threshold = best_selection_threshold_from_step_2, 
and scaling = best_scaling_from_step_3. Vary sample_fraction = [0.75, 0.85] and choose 
best_sample_fraction_from_step_4 based on CV accuracy. 

(5) Take selection_threshold = best_selection_threshold_from_step_2, scaling = 
best_scaling_from_step_3, and sample_fraction = best_sample_fraction_from_step_4. Vary C 
= [(best_C_from_step_1 + 0.05), (best_C_from_step_1 - 0.05)] and choose best_C_fnal based 
on CV accuracy. 

(6) Take C = best_C_fnal, scaling = best_scaling_from_step_3, and sample_fraction = 
best_sample_fraction_from_step_4. Vary selection_threshold 
= [(best_selection_threshold_from_step_2 + 0.05), (best_selection_threshold_from_step_2 -
0.05)] and choose best_selection_threshold based on CV accuracy. 

(7) Take C = best_C_fnal, selection_threshold = best_selection_threshold, and sample_fraction 
= best_sample_fraction_from_step_4. Vary scaling = [(best_scaling_from_step_3 + 0.05), 
(best_scaling_from_step_3 - 0.05)] and choose best_scaling based on CV accuracy. 

(8) Take C = best_C_fnal, selection_threshold = best_selection_threshold, and scaling = best_scaling. 
Vary sample_fraction = [(best_sample_fraction_from_step_4 + 0.05), 
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(best_sample_fraction_from_step_4 - 0.05)] and choose best_sample_fraction based on CV 
accuracy. 

(9) Final parameters are: C = best_C_fnal, selection_threshold = best_selection_threshold, scaling 
= best_scaling, and sample_fraction = best_sample_fraction. 
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STATEMENT OF PREVIOUS RESEARCH 

The authors on this paper have also co-authored a paper titled “Identifying Behavioral Phenotypes 
of Loneliness and Social Isolation with Passive Sensing: A Three-fold Analysis” [24]. While there 
is a relationship between loneliness and depression, these are two diferent cognitive constructs 
and often have diferent dynamics. For example, in our sample of college students, depression rate 
almost triples from the beginning to the end of the semester while loneliness rate stays the same. 
This paper uses the same dataset described in section 3 and features described in section 4.1, to 
primarily do the following: 

• Perform statistical analysis to understand the relationship between these features and loneli-
ness in college students. 

• Uses the Apriori algorithm to extract combined behavior patterns associated with loneliness. 
Further, this paper uses the same pipeline described in section 4.3 to detect post-semester 

loneliness and change in loneliness. It does not consider any depression related outcomes, and 
does not attempt early prediction of post-semester loneliness. The paper on loneliness will cite this 
paper. 
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