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Figure 1: PrISM-Observer is a framework to design and trigger interventions to mitigate user errors in daily procedural tasks 
such as cooking. The user actions are sensed using a smartwatch, which can be used to deliver the interventions and integrate 
into the user’s life to observe their task execution. The system combines multimodal sensing (sound + motion) with stochastic 
modeling of user actions to forecast the intervention moment. It reminds users of key steps at the optimal moment and notifes 
them if they forget a step in real-time. 

ABSTRACT 
We routinely perform procedures (such as cooking) that include 
a set of atomic steps. Often, inadvertent omission or misordering 
of a single step can lead to serious consequences, especially for 
those experiencing cognitive challenges such as dementia. This pa-
per introduces PrISM-Observer, a smartwatch-based, context-aware, 
real-time intervention system designed to support daily tasks by 
preventing errors. Unlike traditional systems that require users to 
seek out information, the agent observes user actions and inter-
venes proactively. This capability is enabled by the agent’s ability 
to continuously update its belief in the user’s behavior in real-
time through multimodal sensing and forecast optimal interven-
tion moments and methods. We frst validated the steps-tracking 
performance of our framework through evaluations across three 
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datasets with diferent complexities. Then, we implemented a real-
time agent system using a smartwatch and conducted a user study 
in a cooking task scenario. The system generated helpful interven-
tions, and we gained positive feedback from the participants. The 
general applicability of PrISM-Observer to daily tasks promises 
broad applications, for instance, including support for users requir-
ing more involved interventions, such as people with dementia or 
post-surgical patients. 
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1 INTRODUCTION 
Every day, we perform many tasks, ranging from cooking to crafting 
to self-care, which involve a series of atomic steps. Accurately 
executing all the steps of tasks can be difcult, especially when 
the tasks become routine and fail to capture our full attention [21] 
or when we face cognitive challenges such as dementia [25]. For 
example, people often forget to turn on the washing machine after 
loading it or turn of lights before leaving home [1]. Such mistakes 
where we omit essential steps or confuse the order of actions can 
lead to undesirable outcomes [41]. For instance, in a study with over 
a hundred participants, close to 20% of participants made critical 
errors while using COVID-19 self-test kits [39]. Thus, real-time 
assistance by sensing a user’s actions and intervening as needed 
can help improve quality of life. 

Most of the existing task-support solutions in HCI are tailored 
for specifc activities, often necessitating specialized equipment or 
advanced computers equipped with cameras and displays, such as 
Augmented Reality (AR) glasses. For instance, Uriu et al. [50] devel-
oped a sensor-equipped frying pan that ofers context-sensitive in-
formation like the pan’s current temperature. Also, AdapTutAR [22] 
is a machine task tutoring system designed to monitor users in 
following tutorials and ofer feedback through AR glasses. How-
ever, we often need help with mundane tasks or in situations where 
instrumenting ourselves or the environment is not easy. There is 
a need for a solution that seamlessly integrates into supporting 
various routine tasks and is practical for constant use. Additionally, 
current systems predominantly rely on users actively seeking infor-
mation, like consulting a recipe while cooking [43, 50]. There has 
been limited exploration into passive interactions, where systems 
proactively monitor and ofer corrective feedback when errors oc-
cur. Designing such interactions is complex, as the system needs 
to model the user’s spontaneous behavior to predict errors and 
intervene without becoming intrusive or annoying. The challenge 
intensifes when we shift focus from camera-based methods to more 
practical and ubiquitous methods such as motion and sound sensors 
on smartwatches. These solutions ofer seamless assimilation into 
daily life while lowering privacy concerns but come at the cost of 
sensor accuracies. Our prior work [8] tried addressing the errors of 
sound and motion-based Human Activity Recognition (HAR) mod-
els by combining procedure knowledge with multimodal sensor 
data. However, we have yet to use these advances to build a reliable 
intervention system that guides a user through a variety of tasks 
in real-time. 

To achieve an agent system that intervenes to mitigate errors 
in daily procedural tasks, this paper introduces PrISM-Observer. It 
preemptively models user task behavior and optimizes intervention 
methods and timing by considering uncertainties for the sensing 
data and anticipating the user’s future behavior. Moreover, the 
framework allows the design of user-friendly reminder-based inter-
ventions that the user or a system designer can customize. Using 
the framework, we developed a prototype system that operates on 
a smartwatch (Figure 1) – a device chosen for its ubiquity, minimal 
privacy concerns compared to camera-based systems, and capabil-
ity to monitor a user across various daily activities. The prototype 
ofers timely and relevant interventions with minimal reliance on 
task-specifc rules. 

PrISM-Observer either reminds users to execute a step in ad-
vance (remind in advance), or if it infers that the user may have 
forgotten a step, it notifes them separately (notify if forgotten). 
These interventions are time-critical as a reminder that comes too 
early or too late will be useless. To verify PrISM-Observer’s ability 
to optimize the intervention timing, we applied the proposed frame-
work to three tasks with diferent procedural complexities: wound 
care, cooking, and latte-making (Study 1). The results showed the 
proposed approach reduced the timing error compared to a baseline 
approach that does not use sensor information: by averaging across 
all steps, 26.8 (baseline) → 24.1 (proposed) seconds in the wound 
care, 119.5 → 61.5 seconds in the cooking, and 50.1 → 22.3 seconds 
in the latte-making tasks, respectively. 

Subsequently, we built a real-time agent system that assisted 
the users in a specifc cooking task of making a sunny-side-up and 
a grilled sausage. We evaluated the agent through a user study 
(Study 2, � = 10) to examine the system’s performance and usabil-
ity. The results showed that the participants perceived the triggered 
interventions to be accurate (20 out of the total 27 triggered inter-
ventions were scored fve or higher for accuracy on the 7-point 
Likert scale in the post-task questionnaire). We also found a trend 
between the delay and perceived accuracy for the two kinds of in-
tervention, highlighting the importance of optimizing their timing. 
In addition, the notify if forgotten interventions were triggered 
correctly (22 out of the total 25 intervention chances), verifying the 
intervention policy’s efectiveness. Overall, the participants found 
the system reliable and showed a positive behavioral intention (8 
out of 10 participants). Furthermore, their comments validated our 
design of using diferent types of interventions and making them 
customizable, as well as ofered implications for the interaction 
between humans and real-world task-support agents. 

In this paper, we make the following contributions: 

(1) framework for modeling user behavior in procedural tasks 
and designing interventions, building upon the foundation 
of the existing multimodal procedure tracking module [8]. 

(2) comprehensive evaluation across three daily-task datasets 
demonstrated the proposed approach’s superiority in fore-
casting the optimal moments for interventions, highlighting 
its efectiveness in complex tasks with over 50% timing error 
reduction. 

(3) user study with a real-time prototype system on a smart-
watch, which not only showed its preferable experience but 
also informed design implications to build reliable and ac-
ceptable task-support agents. 

It is important to note that PrISM-Observer performs promisingly, 
even though the underlying HAR models are approximately only 
50% accurate at detecting each atomic step of the procedures. This 
result demonstrates that it is possible to use imperfect sensing 
and machine learning to build a useful intervention system to aid 
an imperfect human prone to making mistakes. Our system will 
be particularly helpful for users who face cognitive challenges 
(e.g., patients with dementia or after surgery), and we are working 
closely with such populations as part of our future work. We open-
source the framework and the dataset to facilitate the research in 
this domain (https://github.com/cmusmashlab/prism). 

https://github.com/cmusmashlab/prism
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2 BACKGROUND AND RELATED WORK 
We frst examine the cognitive psychology literature on human 
errors in daily tasks, recognizing that such errors are inevitable 
and necessitate support. Next, we review HCI studies concerning 
assistants for procedural tasks, underscoring the importance of 
using a prevalent device to support everyday procedures and its 
unique challenges. Finally, we explore multimodal sensing research 
related to activity recognition, especially using a smartwatch. 

2.1 Human Errors in Everyday Tasks 
The improper execution of everyday tasks, ranging from cooking 
and medical self-care to machine use, is a multifaceted issue rooted 
in cognitive psychology. Studies have shown that errors are likely 
to occur when the working memory load is high or the user is not 
fully attentive [13, 17]. For instance, multitasking during cooking 
can lead to oversights or mistakes in recipe execution [21]. Also, 
Beaver et al. [10] discussed that complex and integrative steps in 
daily activities may be the frst to be afected by cognitive decline. 
In fact, cognitive challenges such as memory lapses contribute sig-
nifcantly to non-adherence to self-care activities by the elderly [36]. 
Additionally, misunderstanding instructions can easily lead to criti-
cal errors; almost 20% of participants made mistakes while using 
COVID-19 self-test kits [39]. These examples underscore the human 
error-prone nature in various daily scenes [41], highlighting the 
need for situated support that helps users avoid or recover from 
errors to compensate for cognitive limitations, as emphasized by 
Zhang [56] 

2.2 Assistants for Procedural Tasks 
Supporting users in conducting complicated tasks in the real world 
has been a popular research theme in HCI research. A common 
approach involves crafting specialized devices tailored for particu-
lar activities or tasks. For example, Lee and Dey [29] developed a 
sensor-augmented pillbox and feedback system to improve medica-
tion compliance. In the cooking domain, Cooking Navi [19] is an 
interface providing multimedia recipe information (i.e., text, video, 
and audio) to aid in cooking. Uriu et al. [50] extended this sup-
port system by creating a sensor-equipped frying pan that ofers 
context-sensitive information like the pan’s current temperature. 
Similarly, MimiCook [43] combines a depth camera and projector 
to deliver on-the-spot guidance during cooking. 

Computer-vision-based approaches are popular to guide users 
through various tasks [20, 22, 32, 47, 55]. For instance, AR Cook-
ing [20] used 3D animation of cookware on AR glasses. Serván et 
al. [47] developed a system to overlay work instruction in an as-
sembly task using AR. Similarly, AdapTutAR [22] is a machine task 
tutoring system that monitors learners’ tutorial-following status 
and provides feedback via AR glasses. HoloAssist [53] is a system 
where a human observer watches the task performer’s egocentric 
video captured by AR glasses and guides them verbally. To sup-
port the creation of such technologies, researchers have compiled 
datasets capturing frst-person perspectives on procedural tasks 
such as cooking [38] or assembly [44, 46]. 

Despite the success of these systems, using cameras and dis-
plays can result in privacy-invasive and power-hungry systems. 
This issue becomes apparent when we want to support users’ daily 

routines pervasively in contrast to specifc, high-stakes situations 
such as assembly [42]. Furthermore, these solutions predominantly 
ofer context-aware information, assuming that users actively seek 
the information. While benefting those inexperienced with the 
task, these systems may not assist adept users who might still com-
mit errors due to inattentiveness or cognitive overload. A similar 
motivation for error-checking systems was discussed by Bovo et 
al. [12], who proposed an approach for real-time error prediction in 
sequence-constrained procedural tasks. While showing promising 
performance in detecting errors in an item-picking-placement task, 
the method relies on the assumption of a predefned step sequence 
and task-specifc heuristics like item location, which does not ap-
ply to various tasks where users are permitted to exhibit multiple 
behavioral patterns. 

Hence, this paper aims to create a generalizable framework to 
monitor and intervene with users engaged in everyday tasks. Given 
such circumstances, users might not always prefer to utilize sophis-
ticated equipment like AR glasses or external cameras for every task. 
Consequently, given its widespread use and minimal interference 
with the task, we have chosen a smartwatch as our device. This deci-
sion undoubtedly introduces a research question: how can we design 
a reliable intervention agent system for users’ spontaneous behavior 
using imperfect sensing? Our solution is to stochastically model 
user behavior from sensor observation with transition knowledge 
to trigger situated interventions. We use minimized task-specifc 
assumptions to ofer fexibility and cater to diferent user prefer-
ences. 

2.3 Smartwatch-Based Context Sensing 
Human Activity Recognition (HAR) is a widely studied technology 
that senses user actions and behavior [54]. Among many modali-
ties used for HAR, smartwatch-based systems often use audio and 
motion data [11, 18, 26, 27, 34]. For example, ViBand [27] enabled 
bio-acoustic sensing using commodity smartwatch accelerometers, 
detecting the use of diferent hand-held tools such as a toothbrush 
and heat gun. Ashry et al. [9] used cascading bidirectional long 
short-term memory to classify motion data of diferent daily ac-
tivities. For audio, Ubicoustics [27] employed acoustic sensing to 
classify 30 daily activities, such as hand washing and typing. Recent 
work has proposed a multimodal learning approach to maximize 
the capability, for instance, GestEar [11], which combined audio and 
motion signals to distinguish diferent gestures, such as knocking 
and snapping. Moreover, SAMoSA [34] explored the downsampling 
of the audio modality by supplementarily using the motion data 
to make the system more privacy-aware. These advances in the 
smartwatch’s HAR capability led to deployed applications, such as 
Apple Watch’s Handwash detection feature [5]. 

We aim to create an intelligent agent that assists users in prevent-
ing errors in various tasks. Here, despite its potential, a signifcant 
challenge with HAR is its limited accuracy when extended to a 
wide range of real-world activities. For instance, Liaqat et al. [31] 
highlighted the difculties posed by noise in tasks performed out-
side controlled environments. Additionally, when HAR is employed 
for tracking procedural tasks, distinguishing between steps with 
similar signal profles is often hard. In this regard, studies like those 
by Nakauchi et al. [35] and Arakawa et al. [8] have suggested the 
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potential of enhancing tracking accuracy by using transition in-
formation between steps of a task. While these approaches have 
improved the accuracy of procedure tracking, the performance is 
still far from perfect. Thus, a fully functional interactive system 
for procedural task support on a smartwatch has yet to be realized. 
This work provides an approach to using state-of-the-art activity 
recognition and procedure tracking algorithms to design a reliable 
agent system. 

3 FRAMEWORK FOR ERROR MONITORING 
IN PROCEDURAL TASKS 

In this section, we introduce a framework for monitoring users’ 
actions and ofering timely interventions. We frst outline a user 
scenario to illustrate the utility of such an agent system and intro-
duce our intervention design. Then, we present an algorithm using 
multimodal sensing to forecast user actions and a policy to trigger 
interventions. 

3.1 User Scenario 
As discussed in Section 2.1, a user’s performance in daily tasks 
is afected by various factors, such as inattention and cognitive 
load or time pressure. Consider two scenarios: 1) Tom decided to 
prepare a sunny-side-up for breakfast instead of his usual choice of 
scrambled egg. Given he is not used to this task, he inadvertently 
forgets to add oil to the pan before cracking an egg. Consequently, 
the egg sticks to the surface of the pan. When Tom attempts to lift it 
with a spatula, the yolk breaks, leading to a disappointing start to the 
day. 2) Catherine is preparing a latte using a semi-automatic cofee 
machine in her ofce’s shared kitchen. She is in a hurry to get to her 
next meeting and forgets to clean the steam wand after use. As a result, 
milk residue clogs the holes of the wand, necessitating maintenance. 
In these situations, it would be helpful if a system could remind 
users just in time to avoid errors or notify them when errors are 
detected in real-time. We envision a context-aware agent living 
on the user’s watch that works in the following way: 1) Just as 
Tom is about to crack the egg, he receives a reminder on the watch to 
pour oil into the pan. 2) When Catherine is about to leave the kitchen 
with her latte, her watch notifes her to clean the steam wand. The 
following subsections describe the formulation and implementation 
to achieve such monitoring and intervention. 

3.2 Interaction Design 
To enable support for a diverse set of tasks, we design our inter-
actions in a generalizable manner instead of using task-specifc 
heuristics as discussed in Section 2.2. Let � = {�1, �2, . . . �� } be the 
set of the atomic steps in the procedure where � is the total num-
ber of the steps. We assume a transition graph � , which contains 
information on the average time spent on each step and the tran-
sition probabilities between steps. � can be obtained from sample 
demonstrations of the task as described by Arakawa et al. [8]. 

Current research on procedure tracking treats each step of a 
process equally, focusing on accuracy in recognizing each step on a 
frame-by-frame basis [8, 35]. In contrast, to develop a user-centered 
helpful agent, it is crucial to prioritize the steps each user needs 
support for. Considering Tom’s cooking example above, it might 
not be necessary to verify whether he remembered to bring an egg 
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Figure 2: Process of selecting steps for intervention and their 
types. The system suggests the possibility of the notify if 
forgotten intervention based on the HAR accuracy of the 
step. Refer to Section 3.2 for details. 

from the refrigerator, as this action inevitably happens during the 
cooking process. Therefore, we assume a subset �̂  ∈ � as a set of 
steps for which situated interventions can be helpful. 

Given the nature of each step in �̂ , suitable interventions may 
change. For example, users may want to receive notifcations only 
when they forget a specifc step, i.e., error detection. Or, users might 
appreciate receiving preemptive reminders for crucial steps, espe-
cially when the timing and sequence are critical and irreversible 
– for instance, adding oil to the pan before cracking an egg into 
it. Providing users with a global control like this is key to success-
fully developing human-AI interaction systems [2]. Accordingly, 
we prepared two types of interventions that will be assigned to each 
target step �̂  ∈ �̂ : remind in advance and notify if forgot-
ten. The remind in advance intervention is intended to happen 
before the user starts the step. On the other hand, the notify if 
forgotten intervention only happens when the user forgets the 
step. To reliably achieve this notifcation (i.e., preventing false pos-
itives or negatives), the system must be able to detect whenever 
the step happens accurately so that, when the step is not inferred, 
the system can be confdent that the user missed the step. Thus, we 
enabled the system to suggest the possibility of using the notify if 
forgotten intervention for a step based on the step’s detectabil-
ity from sensors, the detail of which is described in Section 3.3.2, 
hence satisfying a key requirement for successful human-AI in-
teraction – communicating how well the system functions [2]. In 
addition, PrISM-Observer’s default intervention messages support 
users’ efcient dismissal in case of false predictions without an-
noying them [2]. For the remind in advance intervention, the 
message is “Don’t forget to do �̂ ,” while it is “Have you done �̂?” for 
the notify if forgotten intervention. 

Lastly, system designers or end-users can fnalize the confg-
uration, i.e., which �̂  ∈ �̂  are supported by interventions and the 
intervention type. For instance, a kitchen manager in Catherine’s of-
fce may be particularly interested in ensuring that cleaning occurs 
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post-use of the machinery, thus enabling the notify if forgotten 
intervention for the step. Figure 2 summarizes the entire selection 
process for intervention. 

3.3 Intervention Timing Optimization 
In our framework, the system persistently observes user behavior 
to provide situated interventions, triggering them at opportune 
times. A signifcant obstacle arises from the fact that the training 
data often lacks instances of actual user errors, and it is hard to 
train a model to predict or detect errors directly. Thus, identifying 
omitted actions or reminding before a specifc step in real-time is 
particularly challenging, especially when steps can be completed 
in various sequences, unlike prior work assuming a constrained 
sequence [12]. To address this, we propose an alternative strategy 
to forecast when a specifc step, �̂ , should occur based on the current 
belief about the user state – preemptively estimating the remaining 
time till �̂  happens. We refer to this remaining time till the user 
reaches �̂  from the current step (at time � ) by using a stochastic 
variable ��̂ , which we describe in detail later in the next subsection. � 
At a high level, this framework decides whether to trigger an in-
tervention based on the expectation of when the user will perform 
the step �̂ . Once the certainty of the timing of a step goes above 
an empirically determined threshold, PrISM-Observer prepares a 
timer to trigger an intervention corresponding to the step. This 
timer functions like this: if the system estimates the user will be 
doing a certain step in 10 seconds with high confdence, it waits 
for slightly less than 10 seconds to trigger the remind in advance 
intervention, or the notify if forgotten if the user does not do 
the step around those slightly more than 10 seconds. 

Algorithm 1 presents the overview of the framework. In this 
pseudo-code, for simplicity, we assume a single target step �̂ , but 
the framework is extendable to multiple target steps in parallel, as 
demonstrated in the user study later. In the following subsections, 
we discuss the modeling of ��̂  and intervention policy. � 

3.3.1 Stochastic Modeling of User Behavior. We use a stochastic 
variable ��̂ , indicating a remaining time at the given � till the user � 
reaches the target step �̂ . ��̂  follows a probabilistic distribution � 
� (��

�̂ ). The expectation can be calculated as, ∑ 
� [��

�̂ ] = ��
�̂� (��

�̂ )∑ ∑ 
= � (�) �, �)� (�)Time(� → ˆ 

� ∈� � ∈� �̂ 
� 

, where � �̂  is the set of the possible trajectories from step � to the � 
target step �̂ , � (�) indicates the probability of the user being at step 
� at time � , � (�) indicates the probability of the user will follow the 
trajectory � , and Time(� → �̂, �) means the average time it takes to 
transition from step � to �̂  by following the path � . � (�) is obtained 
by PrISM-Tracker [8]’s output while � (�) and Time(� → �̂, �) are 
calculated based on the transition graph � . 

Importantly, this equation tells us two uncertainties with respect 
to user behavior: uncertainty in the current state (frst sigma term) 
and uncertainty in the future trajectory (second sigma term). To 

Algorithm 1 PrISM-Observer’s algorithmic framework 

1: User Input: �̂  and its intervention type 
2: System Confguration: trained PrISM-Tracker [8] (including 

transition graph �), threshold ℎ�̂ , ofset constants �+ and � − 

3: begin the task 
4: while the user has not fnished the task do 
5: get the latest frame sensor data 
6: apply PrISM-Tracker and update the internal state 
7: calculate � [��

�̂ ] and � [��
�̂ ] (Section 3.3.1) 

8: if intervention timer should begin (Section 3.3.2) then 
9: if intervention is remind in advance then 
10: timer ← � [��

�̂ ] − � − 

11: else if intervention is notify if forgotten then 
12: timer ← � [��

�̂ ] + �+ 

13: end if 
14: timer begins 
15: end if 
16: if timer ends then 
17: if intervention is remind in advance then 
18: trigger the intervention 
19: else if intervention is notify if forgotten and �̂  has 

not been detected by HAR then 
20: trigger the intervention 
21: end if 
22: end if 
23: end while 
24: end the task 

gauge the total uncertainty the system has, entropy can be calcu-
lated as, ∑ 

� [��
�̂ ] = − � (��

�̂ ) log � (��
�̂ ) 

Higher entropy means more uncertainty, meaning a variance in 
the estimation of ��

�̂ . Conversely, a low entropy value indicates 
that the user behavior is more predictable. To computationally 
calculate the expectation � [��

�̂ ] and entropy � [��
�̂ ] in real-time, 

we used the Monte Carlo method [33] with the sample size of 10,000. 
Additionally, � �̂  is enumerated with depth-frst search over � from � 
the current step � to the target step �̂ . 

Example distribution of ��̂  calculated from one session data � 
(cooking task consisting of 14 steps, which we detail in Section 4.1) is 
shown in Figure 3. In general, the distribution gets more certain over 
time till the target step because the uncertainties are mitigated by 
sensor observation. For instance, the estimation gradually becomes 
highly certain when the target step is �4 (Figure 3 Left). On the other 
hand, when the target step is �10 or �13 (Figure 3 Center&Right), it 
has a high variance in the beginning primarily because there are 
several possible paths to the step (majorly whether cooking an egg 
or a sausage frst). After approximately 200 seconds, the variance 
diminishes when the system detects the step of pouring an egg 
on the pan, resolving the uncertainty by considering the sensor 
observation and transition graph. 

3.3.2 Intervention Policy. Lastly, we describe how the intervention 
is triggered based on the distribution of � [��

�̂ ]. The key idea is to 
preemptively forecast the timing of the target step and prepare the 
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Figure 3: Example ��̂  
transition during a session of the cook-� 

ing task, where �̂  is �4 (performed early), �10 (performed in 
the middle), and �13 (performed later). The orange line is the 
ground truth (actual remaining time till the target step). Two 
uncertainties afect the distribution: current belief about the 
user state and future user trajectory. 

intervention. To achieve this, the system continuously characterizes 
user behavior by � [��

�̂ ] and � [��
�̂ ]. Figure 4 shows the example 

transitions related to �7 and �13 in diferent sessions of the cooking 
task. The expected remaining time (in Figure 4 Top) gets reduced 
as the user performs each step and gets closer to the target step. 
The measured entropy can remain quite noisy (as demonstrated in 
Figure 4 Bottom-Left) due to uncertainties in sensor data and future 
user behavior. However, we look for brief moments of certainty for 
the model where it has a reasonable idea of when the target step 
might happen. 

The system starts a timer once the entropy (� [��
�̂ ]) gets lower 

than a step-dependent hyperparameter ℎ�̂ , and � [��
�̂ ] is stable for 

a certain period afterward (“1” in Figure 4). We provide a further 
detailed implementation of this timer policy in Appendix B. This 
approach prevents the model from being confused later by sensor 
uncertainty, especially when the user takes unexpected behavior 
near the target step. Of course, this policy can still lead to imper-
fections, but we will quantify its efectiveness for diferent tasks in 
Study 1. 

Once the timer starts (“2” in Figure 4), the duration of the timer 
depends on the type of intervention. In case of the remind in 
advance intervention, the timer is set for � − seconds before the 
anticipated moment for the step of interest. At the end of the timer, 
the notifcation is triggered (“3” in Figure 4) to remind the user 
to make sure they do the step. In case of notify if forgotten 
intervention, the timer is set for �+ after the anticipated moment 
for the step of interest. Until the timer runs out, the system waits 
for the user to do the step of interest. If the user does not perform 
the step, the system generates a notify if forgotten intervention. 
The values of constants � − and �+ are decided by a system designer 
or can be adjusted by the end-user. For example, if a user wants 
a notifcation as soon as possible after they skip a step, a smaller 
�+ is chosen, but it might lead to noisy interactions. We envision 
designers will experiment with optimal values for these constants 
to tailor the interventions to their goals. 

4 STUDY 1: ALGORITHM EVALUATION IN 
MULTIPLE DAILY TASKS 

We frst investigate the efectiveness of the proposed algorithm 
in preemptively predicting the timing of specifc steps. We use a 
dataset of multiple daily procedures with diferent task complexity. 

4.1 Dataset 
We used the dataset of procedural tasks introduced in [8], that 
is, latte-making (22 sessions, 15 participants) and wound care (23 
sessions, 23 participants) tasks. Following the same protocol, we 
expanded the dataset by collecting new data on a cooking task with 
17 sessions and 8 participants who were already familiar with the 
task. This data collection occurred in a single kitchen. Note that, 
unlike the latte-making and wound care tasks where the watch 
was worn on the right wrist, the watch was placed on the left for 
the cooking task. This diference in the setting led to diferences 
in the motion data patterns since the participants were all right-
handed, and thus, the watch might not have captured some crucial 
motions performed by the dominant hand. Still, we anticipated that 
this new cooking scenario – featuring users with the watch on 
their non-dominant hand’s wrist – would enhance the system’s 
usability and refect more natural use cases. We preprocessed and 
obtained frame-level classifcation results using PrISM-Tracker [8] 
with the same frame length of 0.2 seconds, to which we applied our 
framework. 

These three tasks encompass a range of procedural complexity, 
distinguished by the number of branching paths within each task. 
Wound care is a training task during perioperative counseling for 
skin cancer patients in a medical facility. Given the clinical staf 
trains the patients on how to clean their post-surgical wounds, the 
task is linear, where the sequence of steps is predetermined. How-
ever, given the individual variance in dexterity of patients, there is 
a high variance in the duration of each step across participants. In 
contrast, the latte-making task is done by regular users of a cofee 
machine in an academic building. These users were not given set 
instructions on how to use the machine. Thus, the task involves 
more fexibility, allowing for various sequences of steps to be per-
formed with minimal restrictions on ordering. The cooking task 
represents an intermediate level of complexity. It includes 14 steps 
where users prepare a sunny-side-up and grilled sausage. The par-
ticipants can choose the order in which they cook each item, which 
creates a major branch in the transition. Figure 5 summarizes the 
transition graphs for the three tasks. Notably, the dataset did not 
include error cases, and all steps were properly executed. We will 
test our system’s real-time capability to detect errors in Study 2. 

4.2 Metric 
Study 1 aims to measure the algorithm’s accuracy in forecasting the 
timing of future target steps. To evaluate this, we processed session 
data from the beginning to emulate real-time prediction. When 
the intervention timer started at time � according to a policy, we 
calculated the error between the expected remaining time � [��

�̂ ]
and the actual remaining time till the target step. The example 
of this error calculation is presented in Figure 6. Also, while the 
system will be designed for certain target steps (�̂) as discussed 
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1

2

3 K- K+

1 Check entropy

2
Start timer

3 K- K+

Trigger intervention

Figure 4: Example transitions of estimated remaining time � [��
�̂ ] and entropy � [��

�̂ ] from diferent sessions with diferent 
target steps and how our intervention policy works. The y-axis for the entropy graph starts from 2.0 for visualization. � − 

and �+ 
are system parameters for the timing ofsets of the remind in advance and notify if forgotten interventions, 

respectively. 

in Section 3.2, we assumed �̂  = � to examine the accuracy for all 
steps in this study. 

4.3 Compared Intervention Policies 
We used the policy described in Section 3.3.2 as the proposed con-
dition. We conducted leave-one-session-out cross-validation, and 
hyperparameters ℎ�� (�� ∈ �) in this policy were obtained by grid 
search in each training fold. 

In addition, we prepared the baseline policy, which is based on 
the expected time to the target step at the beginning, i.e., � [�� 

0
ˆ]. 

This policy serves as a condition where the system does not use 
the sensor data and relies on the transition history to predict the 
timing of the target step. 

4.4 Results 
The absolute timing error in the three tasks by diferent target steps 
�̂  is presented in Figure 7. Overall, the proposed policy reduced 
the timing error from the baseline policy at varying target steps, 
especially in tasks with more complexity. At the same time, we 
observe the proposed policy did not contribute much to reducing 
the errors at certain steps. We delve deeper into the result of each 
task and discuss the efect of task complexity and sensing reliability 
on the error. 

4.4.1 Wound Care. Both policies led to small errors (26.8 seconds 
for the baseline policy and 24.1 seconds for the proposed policy 
on average across all steps). The satisfactory performance of the 
baseline policy can be attributed to the single-threaded nature of 
the task. Furthermore, the tracker’s accuracy for this task is lim-
ited, as the steps do not introduce signifcant diferences in sensor 
readings, particularly for intermediate steps (�3, ..., �9), as illustrated 
in Figure 12 in Appendix A. The confusion led to the increased 

error for �6 in the proposed policy. The result suggests that, when 
the sensing consists of much uncertainty, the system struggles to 
model user behavior from the observation. Still, when the sensing 
accurately detects some actions, it benefts the proposed policy. For 
instance, the tracker’s efective detection of state �2 and �11 signif-
cantly lowers the error in predicting the subsequent state �3 and 
�12 in the proposed policy. 

4.4.2 Cooking. The proposed policy largely reduced the timing 
error compared to the baseline policy (119.5 seconds for the baseline 
policy and 61.5 seconds for the proposed policy). In the baseline 
policy, the lack of context as to which item to cook frst led to a large 
error, while the proposed policy could infer it from the observation. 
Similarly to the wound care result, it is implied that the larger errors 
in the proposed policy (i.e., �8, �9, �10) came from the low sensing 
accuracy of �7 and �8, as shown in Figure 13 in Appendix A, in 
addition to the relatively longer duration of �9. 

4.4.3 Late-Making. Lastly, the proposed policy again largely re-
duced the timing error compared to the baseline policy (50.1 seconds 
for the baseline policy and 22.3 seconds for the proposed policy). 
The error in the baseline policy got larger, especially around the 
middle steps where diferent transition branches exist. On the other 
hand, it can be seen that the proposed policy efectively used the 
sensor data to forecast the timing of diferent target steps. 

4.5 Discussion 
The results demonstrated the clear efectiveness of the proposed 
approach and its implications. First, when tasks are complex and 
feature multiple potential transition pathways, employing stochas-
tic models to predict user behavior constantly updated by sensor 
observation proves particularly benefcial. It could be contended 
that the sequence of steps ought to remain constant, especially for 
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Figure 6: Example error calculation in the forecasted and 
actual timing of the target step in Study 1. 

routine tasks. However, we chose to allow users the fexibility to 
adjust the order of steps as per their specifc circumstances. Such 
fexibility enables broader user scenarios as discussed in Section 3.1. 
Simultaneously, enabling the system to learn from the same user’s 
data over days represents a promising direction for future deploy-
ment. 

The results also corroborated that uncertainty remains. Tracking 
all steps in complex, everyday tasks with a common device like 
a smartwatch is quite challenging. The limited tracking accuracy 
of certain target steps afects the behavior modeling around them. 
Still, an efective intervention system does not always need to be 
built on highly accurate sensing. For example, step counters can 
be inaccurate sensors [49] but still an efective tool for behavior 
change [40]. Thus, we examine the utility of our intervention design 
in Study 2. 

5 REAL-TIME AGENT SYSTEM 
IMPLEMENTATION 

Study 1 showed the proposed approach’s efectiveness in forecast-
ing the timing of target steps, based on which our interventions are 
triggered. To examine the utility of such real-time interventions, 
we developed a prototype using Apple Watch (Series 7, watchOS 
10.3) with Swift. Currently, there are two versions of the imple-
mentation: the laptop-server version and the watch-only version. 
For the laptop-server version, we used a MacBook Pro with 16GB 
Apple M1 Chip as a server. The Apple Watch streams the sensor 
data obtained through dedicated APIs (i.e., AVAudioEngine and 
CoreMotion) via the network to the server in real-time. The server 
runs PrISM-Tracker (frame-level HAR and the Viterbi correction), 
followed by PrISM-Observer (stochastic modeling and intervention 
policy). When the intervention is to happen, the laptop plays the 
audio fle. This implementation is fast enough because it can utilize 
efcient computation libraries in Python. We used this version for 
the user study (Study 2). 

At the same time, we developed a watch-only version to show 
the feasibility of a self-contained agent on the device. The process 
pipeline is shown in Figure 8. Here, the obtained multimodal data 
is funneled into a pre-trained feature extractor that operates on the 
principle of CoreML [4], Apple’s machine learning framework. The 
feature extractor analyzes the incoming data streams and translates 
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Figure 7: Result of Study 1 comparing the baseline and pro-
posed policies in three daily procedural tasks. The proposed 
policy greatly reduces the timing error as the procedure’s 
complexity increases thanks to the sensor observation and 
the introduced stochastic modeling of user behavior. Error 
bars indicate standard error. * indicates � < 0.05 in a two-

sided paired t-test. 
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Figure 8: Implementation overview of the real-time agent 
system on Apple Watch. 

them into a feature-rich format suitable for the subsequent frame-
level classifer, which CoreML also powers. Note that these models 
were already trained ofine in the same manner with the prior 
work [8] and converted into CoreML format beforehand using 
coremltools1. Following the classifer, the system applies the 
Viterbi tracking and intervention policy (including the stochastic 
modeling). These components leverage Apple’s Accelerate [3] for 
high-performance computations. Finally, when the system decides 
to trigger interventions, the watch plays the corresponding audio 
fle. In both versions, note that while the system emits sound for 

1https://github.com/apple/coremltools 

Table 1: Average time taken to process one frame (equivalent 
to 0.2 seconds) at each module in our real-time agent system 

Module Laptop (sec) Watch (sec) 
Frame-level HAR 0.04 0.28 
Viterbi tracking 0.0002 0.001 

Intervention policy 0.09 0.98 

intervention, the sensor readings of both motion and audio stop to 
prevent noise from adding to the tracking. 

We conducted a speed test by applying each module to a frame 
500 times, the result of which is shown in Table 1. This result 
shows that the laptop-server version is fast enough to run the 
pipeline at 5 fps (Recall one frame is 0.2 seconds long). However, 
the watch-only version is slower due to the current limitation in the 
computation power and lack of an efcient Swift library. In detail, 
the most time-consuming computation is the Monte Carlo method 
to estimate the distribution of ��

�̂ . Thus, the current watch system 
runs PrISM-Tracker at 2 fps to update its internal state and PrISM-
Observer once per 3 seconds to control intervention, which is still 
efective, provided each step has a certain duration. We believe 
future engineering can further accelerate the watch-only version. 

6 STUDY 2: USER STUDY WITH A REAL-TIME 
AGENT SYSTEM IN COOKING 

Finally, we conducted a user study to examine the accuracy of 
the real-time system and users’ perception of the performance of 
in-situ interventions. We used the laptop-server version implemen-
tation with the cooking task introduced in Study 1, which showed 
that the task has relatively larger errors in forecasting the target 
step moment even though the proposed approach mitigates them. 
This study involves evaluating the intervention efect where such 
uncertainty remains. 

6.1 System Confguration 
We frst trained PrISM-Tracker [8] (i.e., frame classifer and transi-
tion graph �) as the tracking module and obtained the best thresh-
olds (ℎ�1 , ℎ�2 , ..., ℎ�14 ) for the intervention policy using all 17-session 
training data in the dataset. Moreover, we decided the remaining 
parameters in the system, that is, � − and �+, governing the timing 
of the remind in advance and notify if forgotten interventions 
around the target step, respectively. The authors explored diferent 
values before the study and set � − = 15 and �+ = 15 (seconds) as 
reasonable timing to trigger each type of intervention before and 
after the moment the target step is supposed to happen. 

In addition, we chose candidate steps �̂  from all the 14 steps that 
users may forget or want to be reminded of (Recall the step selection 
process shown in Figure 2). Here, two system designers individually 
chose candidate steps frst and then had a discussion to reach an 
agreement. As a result, they chose fve steps: �2 washing hands 
with soap and water, �6 pouring oil on the pan, �8 dropping a small 
amount of water, �11 wiping the pan surface, and �14 cleaning the 
table. Moreover, as described in Section 3.2, the system suggests the 
intervention type option based on each step’s detectability by frame-
by-frame HAR (without the Viterbi correction [8], corresponding 

https://github.com/apple/coremltools
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Table 2: Candidate intervention steps �̂  in Study 2. Their intervention type was decided based on how accurately the step 
is detected by HAR and input by an external system designer. In actual cases, the selection is customizable based on user 
preferences. 

Step Error in Study 1 (sec) HAR Accuracy (F1) Intervention Type 
�2: washing hands with soap and water 

�6: pouring oil on the pan 
�8: dropping a small amount of water 

�11: wiping the pan surface 
�14: cleaning the table 

25.9 
72.3 
85.4 
56.2 
71.0 

0.83 
0.64 
0.28 
0.43 
0.52 

notify if forgotten 
remind in advance 
remind in advance 
notify if forgotten 
notify if forgotten 

Table 3: Participant information and their chosen steps for the intervention in Study 2. 

Participant Gender Age Frequency Environment Selected Steps Skipped Steps 
P1 M 20’s Occasional kitchen 1 �6, �8, �11 �14 
P2 M 20’s Often kitchen 1 �2, �6, �8, �11, �14 
P3 M 20’s Often kitchen 1 �8, �11, �14 �11 
P4 F 20’s Often kitchen 1 �2, �6, �8, �11, �14 �2, �14 
P5 F 20’s Very often kitchen 1 �2, �11, �14 �11, �14 
P6 F 40’s Often kitchen 2 �2, �6, �8, �11 �2, �11 
P7 M 70’s Very often kitchen 2 �2, �8, �14 �2, �14 
P8 F 60’s Very often kitchen 2 �2, �6, �8, �11, �14 �11 
P9 M 30’s Occasional kitchen 2 �2, �6, �8, �11, �14 �2, �11, �14 
P10 M 20’s Occasional kitchen 2 �8, �11, �14 �14 

to the left fgure in Figure 13 in Appendix A). The F1-score for the 
chosen steps were 0.83, 0.64, 0.28, 0.43, and 0.52, respectively. We 
frst decided to assign remind in advance to �11 due to its low 
accuracy. Moreover, the system designers suggested that doing �6 
before putting an item on the pan is important in actual cooking, 
and thus, we assigned remind in advance to �6 as well. We assigned 
notify if forgotten to the other steps. Note that we used the 
same intervention set for all participants in this study to make 
the comparison meaningful, but the end-users would always have 
the fexibility to switch the type. The detection accuracy and the 
assigned intervention type for each �̂  ∈ �̂  are summarized in Table 2. 

6.2 Procedure 
We recruited 10 participants (P1 – P10) through word-of-mouth. 
They self-reported how often they cook in their daily lives and were 
all right-handed. To test the robustness against diferent environ-
ments, we used the same kitchen (kitchen 1) as in the training data 
for fve participants and a diferent kitchen (kitchen 2) for the rest 
of the participants. Their demographic information is presented 
in Table 3. 

6.2.1 Step Selection. After consent, we showed a list of all the steps 
� and a tutorial video. Then, we shared interaction candidate steps �̂ , 
and asked which steps the users believe they might miss at times and 
would prefer some intervention support. We asked them to choose 
at least two steps for the experiment. We also encouraged them to 
imagine the task would be their routine and which intervention 
they might want. Simultaneously, we emphasized that they could 
change the step order fexibly without having to follow the tutorial. 
We confgured the agent system once they fnalized the steps. 

Here, if their chosen steps included a step for the intervention of 
notify if forgotten, we asked them to intentionally skip some 
of them to test the accuracy of the intervention policy. Note, if the 
participant intentionally skipped the last step �14, the study ran 
for an extra �+ + 23.6 (the average time for �14) seconds to give 
the system enough time to judge whether to trigger the notify 
if forgotten intervention for �14. We did not specify what to do 
during the extra time, and the participants behaved naturally. The 
selected steps for each participant and which step they skipped are 
also shown in Table 3. 

6.2.2 Task Execution. Once we confgured the system, we answered 
their questions about the task to ensure they understood the proce-
dure. We also explained that, during the task execution, they were 
expected not to pause for questions (except in case of an emergency). 
They pressed the button on the watch app to begin the task and hit 
the button again to end the task. After the task, they completed a 
questionnaire, followed by semi-structured interviews about their 
experience of the system. The entire session took approximately 30 
minutes for one participant. 

6.3 Metric 
We measured the timing diference between the triggered interven-
tion and the target step. Here, the timing for the target step was 
the moment the participant fnished the previous step, which is the 
same timing as they started the target step unless they intentionally 
skipped the target step. Note that the triggered intervention timing 
here accounted for the ofset, that is, �+ and � − . We manually 
annotated these timings for each session. 

In addition, for the notify if forgotten intervention, we an-
notated if each intervention was accurate. True positive (TP) when 
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Figure 9: The delay of each triggered intervention from the 
actual timing of the target step and its perceived timing ac-
curacy. The shape indicates the intervention type (circle: re-
mind in advance and square: notify if forgotten). The 
color indicates diferent steps. The two dashed lines are trend 
lines obtained by ftting a quadratic function separately to 
each intervention type (blue: remind in advance and red: 
notify if forgotten). 

it was triggered and the participant skipped the target step; false 
positive (FP) when it was triggered and the participant did the step; 
false negative (FN) when it was not triggered and the participant 
skipped the step; and, true negative (TN) when it was not triggered 
and the participant did the step. 

In the post-task questionnaire, we asked the participants to rate 
the timing accuracy of each intervention they experienced. Note, 
for the notify if forgotten intervention, we asked about the 
timing accuracy only if it was triggered (i.e., either TP or FP). They 
answered whether each intervention was accurate in terms of tim-
ing with a Likert scale from 1 (strongly disagree) to 7 (strongly 
agree). Then, they answered whether the system is reliable with 
a Likert scale from 1 (strongly disagree) to 7 (strongly agree). In 
addition, we asked for their behavioral intention, guided by the 
Technology Acceptance Model [15], which explains users’ attitudes 
towards technologies and is frequently used to evaluate how likely 
individuals are to use the technologies. 

6.4 Results 
Figure 9 shows the delay of each intervention and how accurate 
the participants felt about the timing of the intervention. The circle 
markers indicate the remind in advance intervention (i.e., �6 and 
�8) and the square markers indicate the notify if forgotten in-
tervention (i.e., �2, �11, and �14). The result suggests that the agent 
system could trigger most interventions with a small timing error, 
and the participants felt they were accurate (20 out of the total 27 
triggered interventions were rated fve or higher on the 1–7 Likert 
scale). Also, by looking at the trend lines, the relationship between 

Figure 10: Performance of each of the notify if forgotten 
interventions. TP, TN, FP, and FN indicate true positive, true 
negative, false positive, and false negative, respectively. 

the delay and perceived accuracy is implied. For instance, the par-
ticipants perceived the remind in advance intervention (circle 
markers) as inaccurate as the delay becomes positively larger. At 
the same time, it was best rated when triggered some seconds before 
the delay is 0. This is aligned with the type of the intervention— 
users want it to be triggered before the target step—validating our 
design, specifcally, the use of the ofset � − with � [��

�̂ ]. Conversely, 
they rated higher for the notify if forgotten intervention (square 
markers) if they happen some seconds after, also corroborating the 
use of the ofset �+. While more samples are demanded to examine 
the trend, we can infer that the participants’ expectations about the 
diferent interventions afected their perception of the intervention 
timing. 

Additionally, there was no signifcant diference in the delay 
between kitchens 1 and 2 (� > 0.05) in this cooking scenario. While 
more investigation is demanded to quantify the efect, this result 
suggests the beneft of the smartwatch-based agent system: the 
location-independent HAR capability. 

Figure 10 shows whether each of the notify if forgotten 
interventions was accurate. While the number of samples is small, 
the results of the low error rate (3 out of 25 chances) indicate that the 
agent system could detect whether the target step happened or not 
and notify the participants appropriately. More specifcally, there 
was no false intervention for �2 thanks to the high HAR accuracy 
(See Table 2). On the other hand, there were false interventions 
for �11 and �14, which can be explained by a relatively lower HAR 
accuracy. Given this, the agent system could infer the risk of false 
interventions in the model training phase, which would help system 
designers confgure the system. 

Figure 11 presents the relationship between the overall relia-
bility and the behavioral intention answered by the participants. 
While a longer-term study is ideal, this shows initial evidence that 
such a task-support agent system is favorably accepted. The result 
also suggests a correlation between reliability and behavioral in-
tention, which implies that reducing errors and achieving situated 
interventions is important. 

6.5 User Comments 
Finally, we summarized the qualitative insights from the semi-
structured interviews after the task. 
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Figure 11: The rated reliability and behavioral intention of 
the agent system. Each dot represents a participant’s answer 
to the questionnaire. The larger circles indicate two partici-
pants. 

6.5.1 How Participants Selected Interventions. The number of par-
ticipants who enabled each target step �̂  ∈ �̂  in the step selection 
phase is 7, 6, 8, 9, and 5, for �2, �6, �8, �11, and �14, respectively. The 
individual diference shown in Table 3 refects their preference. For 
instance, P7 mentioned, “I never forget pouring oil when using the 
pan, so not including �2.” P3 said, “I thought I would be inattentive 
in the latter part of the procedure.” P5 said, “I’m experienced. I only 
need them if I make a mistake.” P6 commented, “I am a careless 
person. I would enable all notifcations. I believe I would not be 
annoyed very much. It’d be like a fun assistant.” In addition to these 
comments, they agreed that using diferent types of intervention 
made sense. P8 said, “I don’t need to be reminded every time to 
wash hands, so the system notifying me only if I make a mistake is 
a good design.” The results underpin the design of our framework, 
enabling end-user customization of the intervention. 

6.5.2 How Participants Perceived Interventions. Next, we asked 
about the interventions they remembered most and their impression 
of the interventions. They were surprised by the agent’s capability, 
especially for the notify if forgotten intervention. P1 said, “I’m 
amazed by how it knows about my situation. The notifcation (for 
�14) was accurate.” At the same time, a few participants mentioned a 
need for certain notifcations to be more precise. P9 mentioned, “For 
�11 (wiping the pan surface), it was after I already put my sausage, 
and thus I felt it is a bit inaccurate.” P3 also suggested that it is safe 
to trigger interventions earlier as the steps can be irreversible in 
the cooking. Our framework is fexible enough to incorporate such 
adjustments, for example, by using a smaller �+ value to enable 
immediate detection or changing the type of the intervention into 
remind in advance. 

Similarly, regarding the notify if forgotten intervention, P2, 
after experiencing FP (false positive), said, “I was not annoyed much 
by the notifcation (�11). I just thought it was checking me.” On the 
other hand, P1 experienced FN (false negative), mentioning, “I was a 
bit sad when it did not happen even though I skipped it (�14). In the 
real world, strict checking may be good for me.” The results suggest 
the tendency of false-positive resistance and false-negative sensi-
tiveness, consistent with a design strategy recognized in research 
on real-time interventions that rely on imperfect sensing [7]. 

Moreover, the participants agreed that the remind in advance 
intervention is useful for unfamiliar steps like �8. They also sug-
gested that it should happen before the step. P9 mentioned, “Earlier 
is good. If it is after I have done the step, it would sound hilarious. 
But too early is also not good. Being able to feel some intelligence in 
the system is what attracts me.” This comment highlights the impor-
tance of minimizing timing errors and the design of interventions 
that meet user expectations. 

6.5.3 Further Use Cases. Acknowledging the capability of the agent 
system, the participants shared an interest in extending the applica-
tion. The examples include skin care (3 participants), gym/exercise 
routine (3 participants), furniture assembly (2 participants), medica-
tion (2 participants), house cleaning (2 participants), using a laundry 
room (1 participant), and using a maker space (1 participant). For 
example, P1 mentioned, “I sometimes forget to sanitize the ma-
chine after I use it in the gym. Also, it would help me complete my 
exercise routine without forgetting an activity.” Supporting these 
various needs is promising, given PrISM-Observer’s generalizable 
performance suggested in Study 1. 

6.5.4 Room for Improvement. Finally, we also gained insights about 
future improvement. P8 said, “The system did not work well for me 
throughout the task. It was wrong from the beginning. I wanted 
to fx it by telling it.” For this user, the system mistook the path 
P8 followed; P8 cooked the sausage frst while the system guessed 
she cooked an egg frst due to HAR error, resulting in overly early 
interventions. In such a case, as P8 expressed, ofering a way for 
the user to correct the agent’s belief will be ideal, which we discuss 
further later in Section 7.5. 

On another note, P1 mentioned, “I would like to see more vari-
ations in the audio message with diferent voice styles. If it were 
my favorite idol’s voice, I might accept it even if the intervention is 
wrong.” Such a social aspect between the task-support agent system 
and the user is an exciting research area [45]. 

6.6 Summary 
The results demonstrated the accuracy of our agent system’s in-
tervention, which the participants favorably accepted. The user 
comments highlighted the benefts of PrISM-Observer’s design, 
such as the fexibility to cater to diferent user needs and to adjust 
parameters to enhance the user experience. We believe Study 2 
produces insights into the human-AI interaction system powered 
by sensing technology in the physical world. 

It should be noted that although seven participants completed 
the task in a sequence difering from that presented in the tutorial, 
we cannot rule out the possibility of a study-induced bias afecting 
task behavior. Acknowledging this limitation, we plan to under-
take a longer-term study to assess the system’s ability to adapt to 
spontaneous user behavior during tasks. 

7 LIMITATIONS AND FUTURE WORK 
The current formulation and implementation of PrISM-Observer is 
not without limitations. We also describe future work to advance 
the feld further. 
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7.1 Long-Term Behavior Study 
Study 2 is in a controlled setting and thus does not perfectly re-
fect the user behavior performing routine tasks under natural 
conditions, such as inattentiveness. A long-term real-world study is 
needed to further investigate the system’s benefts and user percep-
tion. We want to emphasize that user behavior should be considered 
fexible instead of a fxed sequence for reasonable human-AI inter-
action so the system can adjust to spontaneous user behavior, such 
as switching the order of the steps. We believe PrISM-Observer’s 
capability to incorporate such uncertainty in human behavior will 
be a fundamental solution. 

In addition, a long-term study will also shed light on the agent’s 
capability to learn from user behavior to adapt the intervention 
policy. For instance, if the user often forgets a certain step, the 
system switches the intervention from notify-if-forgotten to 
remind-in-advance. Conversely, if the user gets accustomed to 
the task enough and thinks remind-in-advance is too much, it can 
be switched to notify-if-forgotten. It is of interest to examine 
the optimal balance of the agent’s adaptability and the end-user’s 
controllability. 

7.2 Health and Accessibility Applications 
The proposed framework will be especially helpful for health appli-
cations to assist people in need. For example, people with dementia 
struggle to perform everyday routine tasks properly, and thus, in-
terventions are helpful [24, 28]. Moreover, patients who need to 
perform self-care after surgery regularly could beneft from it to 
avoid the critical consequence of infection due to mistakes [30, 48]. 
We are currently developing and evaluating assistants for postop-
erative wound care with skin-cancer patients undergoing Mohs 
micrographic surgery [51]. 

7.3 Detecting Errors within a Step 
PrISM-Observer can detect and remind a user of a step in the proce-
dure. Currently, it does not support dealing with more fne-grained 
errors, such as errors within a step, often necessitating visual in-
formation to be detected. For example, while steaming milk for the 
latte-making task, it is important to keep the jug at a proper angle 
to get a good milk texture, which the current system cannot sense. 
While aligning user expectations about the system’s capability is 
crucial, we plan to investigate further sensing capability, such as 
applying multimodal anomaly detection [6] to compare the sensor 
data within the step with prior “good” behavior. 

7.4 Refning Step Granularity 
Automating and optimizing the process of dividing the procedure 
into steps is crucial to scaling our framework to diverse tasks. In this 
regard, Zhou et al. [57] proposed an approach to constructing an 
open-domain hierarchical knowledge base of procedures. Wake et 
al. [52] created a task model for decomposing human demonstration 
of procedural tasks for robots to model the process. In our case, 
it could be possible for the framework to use an automatically 
generated transition graph internally to model the user behavior 
and to trigger intervention. In contrast, the user specifes the desired 
intervention without being aware of the representation of the steps 
used by the system. 

7.5 Interweaving Broader Interactions 
This work focuses on passive interaction from the user’s perspec-
tive; the system monitors user task behavior and proactively trig-
gers intervention. Though our study demonstrated its efectiveness, 
the potential role of a task-support intelligent agent can be more 
versatile [23]. For instance, more dialogue between the user and 
the system could be an interesting area to study. PrISM-Tracker [8] 
showed a preliminary approach to update its tracking belief through 
dialogue. In the framework of PrISM-Observer, if the system could 
ask the user “What are you doing?”, the system could resolve the 
uncertainty about the current step. Similarly, asking “What will 
you do next?” would resolve the uncertainty about the future step 
transition. Conversely, the user’s reaction to the intervention could 
correct errors in the agent, as suggested in Section 6.5.4. Likewise, 
if there is a question-answering capability, the user’s asking, “What 
should I do after washing my hands?” would also help the agent 
track the user’s state. Given the surge of human-like chat capability 
enabled by large language models, investigating such real-time 
dialogue interactions along with sensor data is promising. 

7.6 Extending to Other Sensing Platforms 
We implemented our prototype on a smartwatch based on its capa-
bility to sense a user across various daily activities at diferent places. 
At the same time, the framework’s stochastic modeling can be used 
as a post-process for other HAR systems. For example, VAX [37] 
uses ambient, privacy-sensitive sensors such as Doppler RADARs 
and LIDARs. We can install such a HAR system in the user’s kitchen 
to monitor their everyday cooking and use PrISM-Observer on top 
of it. Existing voice assistants like Alexa could also be a platform 
for integrating our framework, leveraging acoustic sensing to ob-
tain user context. In the context of voice assistant, while prior 
research [14, 16] has shown the beneft of dialogue-based guidance 
of steps, our work extends their capability by context awareness 
and user-centered intervention design, as recently emphasized by 
Jaber et al. [23]. Investigating diferent input sensors and their efect 
on end-user experience is an important future study. 

8 CONCLUSION 
We presented PrISM-Observer, a framework for designing interven-
tions to mitigate errors in daily procedural tasks (e.g., forgetting 
a step), and developed a real-time agent system on a smartwatch 
leveraging multimodal Human Activity Recognition (HAR). The 
stochastic modeling of user behavior and intervention policy based 
on it enables situated triggering of interventions. Moreover, the 
framework is designed so users or system designers can customize 
which step they need intervention for and how. Study 1, involving 
three daily task datasets, verifed the proposed approach’s efec-
tiveness in optimizing the intervention timing. In addition, Study 2, 
using the real-time smartwatch system in the cooking scenario, 
resulted in positive participant feedback, providing qualitative in-
sights into such real-time intervention in procedural tasks. The 
results and discussion pave the way for achieving reliable human-
agent interaction where the agent’s sensing capability is limited, 
which is often the case in real-world tasks. 
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A PRISM-TRACKER’S PERFORMANCE 
Figure 12 – Figure 14 show the frame-level HAR confusion matrix 
of PrISM-Tracker [8] without and with the Viterbi correction, for 
the wound care, cooking, and latte-making task, respectively. Recall 
that one frame corresponds to 0.2 seconds. While the Viterbi correc-
tion improved the classifcation performance, inaccuracy remains, 
especially for steps with similar signal profles: macro F1-Scores 
for the wound care, cooking, and latte-making tasks were 50.7%, 
61.5%, and 52.9%, respectively. 

B DETAILS OF INTERVENTION POLICY 
IMPLEMENTATION 

The intervention policy described in Section 3.3.2 includes several 
hyperparameters. First, there is a step-dependent entropy threshold 
ℎ�̂ , which governs the timing to initiate an intervention timer. Then, 
after the intervention timer starts, the framework keeps monitoring 
� [��

�̂ ]. If there is a signifcant change within the next � = 10 
seconds (before the timer ends), the timer is discarded, for which 
we use a threshold parameter � = 30 seconds. Moreover, as shown 
in Figure 4 Bottom, the entropy fuctuates due to the randomness 
in the Monte-Calro method, thereby necessitating the need for 
smoothing. We apply a moving average smoothing with the size 
of � = 2 seconds to the entropy. Parameters � , � , and � were 
empirically determined in the initial observation of ��̂  transitions� 
of a few sessions. On the other hand, the entropy threshold ℎ�̂  

was optimized through grid search in the process of the leave-one-
session-out cross-validation. 

In addition, for the notify if forgotten intervention in the real-
time system used for Study 2 (cooking), the system monitors the 
user action from the moment the timer started for � [��

�̂ ] + �+ sec-
onds to judge whether the target step �̂  happens. Since frame-level 
prediction can fuctuate due to sensing noise, we apply a moving 
average smoothing with the size of 1 second, which corresponds 
to 5 frames. Moreover, the system judges the step �̂  happens if the 
probability for the step is highest for 5 seconds, which was also 
determined empirically based on the fact that every step in the 
cooking usually lasts more than 10 seconds (See Figure 5). 
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Figure 12: Frame-level confusion matrix on the wound care task. (left) raw HAR (right) after the Viterbi correction. 

Figure 13: Frame-level confusion matrix on the cooking task. (left) raw HAR (right) after the Viterbi correction. 

Figure 14: Frame-level confusion matrix on the latte-making task. (left) raw HAR (right) after the Viterbi correction. 
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