
RainCheck: Overcoming Capacitive Interference Caused by
Rainwater on Smartphones

Ying-Chao Tung
Paul G. Allen School | DUB Group

University of Washington
Seattle, WA, USA

yct56@cs.washington.edu

Mayank Goel
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
mayank@cs.cmu.edu

Isaac Zinda
Harvey Mudd College
Claremont, CA, USA
me@isaaczinda.com

Jacob O. Wobbrock
The Information School | DUB Group

University of Washington
Seattle, WA, USA
wobbrock@uw.edu

ABSTRACT
Modern smartphones are built with capacitive-sensing touchscreens,
which can detect anything that is conductive or has a dielectric
differential with air. The human finger is an example of such a di-
electric, and works wonderfully with such touchscreens. However,
touch interactions are disrupted by raindrops, water smear, and
wet fingers because capacitive touchscreens cannot distinguish fin-
ger touches from other conductive materials. When users’ screens
get wet, the screen’s usability is significantly reduced. RainCheck
addresses this hazard by filtering out potential touch points caused
by water to differentiate fingertips from raindrops and water smear,
adapting in real-time to restore successful interaction to the user.
Specifically, RainCheck uses the low-level raw sensor data from
touchscreen drivers and employs precise selection techniques to
resolve water-fingertip ambiguity. Our study shows that RainCheck
improves gesture accuracy by 75.7%, touch accuracy by 47.9%, and
target selection time by 80.0%, making it a successful remedy to
interference caused by rain and other water.

CCS CONCEPTS
• Human-centered computing → Interaction techniques;

KEYWORDS
Rain water, capacitive touch sensing, smartphones, touch, gesture,
swipes, situational impairments, improved sensing.

ACM Reference Format:
Ying-Chao Tung, Mayank Goel, Isaac Zinda, and Jacob O. Wobbrock. 2018.
RainCheck: Overcoming Capacitive Interference Caused by Rainwater on
Smartphones. In 2018 International Conference on Multimodal Interaction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICMI ’18, October 16–20, 2018, Boulder, CO, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5692-3/18/10. . . $15.00
https://doi.org/10.1145/3242969.3243028

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p
1 2 3 4 5 6 7 8 9 0

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p
1 2 3 4 5 6 7 8 9 0

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p
1 2 3 4 5 6 7 8 9 0

t

yf

g
,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p
1 2 3 4 5 6 7 8 9 0

Figure 1: The upper figures show how rainwater interferes with
sensing finger location. The water (top-left) shifts the sensed finger
location to the left and down (top-right). RainCheck detects unusual
capacitive signatures (bottom-left) and, among other features, offers
a target selection technique to resolve ambiguity (bottom-right). In
this case, RainCheck suggests a gesture (swipe) to select UI elements
that were affected by the water-covered area.

(ICMI ’18), October 16–20, 2018, Boulder, CO, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3242969.3243028

1 INTRODUCTION
People often use their smartphones while walking, commuting,
or in other outdoor situations. Currently, touch is the most dom-
inant way users interact with modern mobile devices. However,
commodity capacitive-sensing touchscreens built on smartphones
are not customized to sense only human finger touches. They are
engineered to detect any conductive or dielectric material, and the
human skin is just one of many possibilities.

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

464

https://doi.org/10.1145/3242969.3243028
https://doi.org/10.1145/3242969.3243028

Therefore, raindrops, water smears, or even sweat can make it
hard for the touchscreen to detect real human finger touch. For
example, in the United States, approximately 2.8% of the population
has hyperhidrosis or excessive sweating of the palms [8]. Smart-
phone touchscreens generally cannot differentiate between water
and fingers. When touchscreens are wet and fingers come into
contact with them, the water disrupts the sensed location of the
finger (see Figure 1, top right). The result is what we might call
a "situational fat finger problem." When a person is using his or
her smartphone in the rain, usability decreases, and the person
tends to focus much more on getting touches to work, ruining
situation-awareness and posing a potential safety hazard.

Much research has explored how to improve the users’ text entry
and target selection accuracy while walking [6, 14, 17, 22]. Kane
et al. [12] proposed the term Walking User Interfaces (WUIs) and
evaluated screens whose elements grew in size when the user was
walking. Moreover, Yamabe [30] adapted the size of fonts and im-
ages automatically while walking by using accelerometer informa-
tion. That said, how weather might affect the interaction between
users and smartphones while walking remains unexplored.

To address the problem ofwet fingers or touchscreens, we present
RainCheck (Figure 1), a system that differentiates between rainwa-
ter and human touches. By extracting features from the low-level
raw capacitive data stream from commodity touchscreen drivers,
RainCheck adapts to spurious touch events and uses a target dis-
ambiguation technique that works well even when the touchscreen
is wet.

We first report some observations of people using their smart-
phones in the rain, describing behaviors such as wiping phone
screens on various parts of the body to remove rainwater. We then
report results from a controlled study showing that RainCheck
improves gesture accuracy by 75.7%, touch accuracy by 47.9%, and
target selection time by 80.0%, reducing target selection time in
the presence of water from 2.5 to 0.5 seconds. To achieve the lat-
ter two results, RainCheck utilizes a well-known precise selection
technique, Escape [31], to solve the "situational fat finger problem"
that occurs when the human finger comes into contact with water
and the screen at the same time.

The contributions of this paper are as follows: (1) the devel-
opment of RainCheck, which uses low-level capacitive sensor in-
formation and employs a well-known precise selection technique
to improve interaction on wet smartphone touchscreens; (2) em-
pirical results from a controlled study showing that RainCheck
significantly improves touch accuracy and reduces interaction time
compared to the same touchscreen without RainCheck.

2 RELATEDWORK
In this section, we briefly review work related to capacitive sensing
technologies, situational impairments and precise selection tech-
niques for touchscreens, the three areas of work most related to
this project.

2.1 Capacitive Sensing Technologies
Generally, capacitive-sensing technology can detect anything that is
conductive or has a dielectric differential with air, which can cause
confusion whenmultiple such objects are in contact with the screen.

To address this issue, new phones often use a combination of self-
and mutual-capacitance. Combining self- and mutual-capacitance
can help because water and human-touch have different capacitive
signatures in most cases. When the screen has either water or a
finger, this approach works most of the time. However, it fails often
enough to degrade the usability of the device, and can still lead to
users becoming frustrated.

Recently, hardware manufacturers have developed different ap-
proaches to improve the noise rejection capabilities of touchscreens
[5, 16, 26]. However, to the best of our knowledge, no prior work
has proposed any software-only solution to disambiguating touches
from water. Unlike hardware-based solutions, software-based so-
lutions can be applied to smartphones on the market using only
firmware or software upgrades. The low incremental cost of software-
based solutions might also make it an attractive alternative to
hardware-based solutions, which can be more expensive.

2.2 Situational Impairments
Priorwork has conceived of how "situational impairments" [24]may
worsen a user’s interactions with mobile devices [33]. Situational
impairments might be caused by numerous factors [29], including
ambient temperature, light levels, noise, and bodily movements, to
name a few. Goel et al. [7] argued that current mobile devices still
lack appropriate awareness of context, situation, and environment,
limiting successful interaction between devices and users. Moreover,
Pascoe et al. [20] indicated that using mobile devices while walking
is the basic requirement of fieldwork users with mobile systems.
Other research on text entry [17, 32]and target selection [14, 22]
while walking has tried to make mobile devices more useful while
users are on-the-go.

Context-awareness has also been highlighted as one of the key
user abilities that can be compromised when mobile devices are
used in the wild [15, 19, 20]. For example, Sarsenbayeva et al. [21]
explored how cold environments affect users’ ability to interact
with mobile devices.

2.3 Precise Selection Techniques for
Touchscreens

The challenge of enabling precise touch interactions on touch-
screens has been investigated by numerous researchers (e.g., [3]).
The "fat finger problem" has also been recognized and discussed
for years (e.g., [23]). Precision-Handle [1], Shift [27], Escape [31],
and LucidTouch [28] are four of the many solutions to address this
problem. Projects have also addressed text entry on ultra-small
touchscreens [4, 18, 25].

The interference of users’ touch by water can be viewed as
a type of fat finger problem because the touch area is enlarged
(and distorted) by the size of the water’s contact area. RainCheck
leveraged concepts from prior work in the design of its selection
technique to overcome this interference.

3 OBSERVATIONS OF SMARTPHONE
INTERACTIONS IN THE RAIN

To better understand the problem of rainwater interference on ca-
pacitive touch screens, we conducted informal field observations of
eight people using their smartphones on a rainy day in <location

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

465

anonymized>. The observations were conducted in late winter 2017
over three consecutive rainy days. On the days in question, weather
service data show 1.3 - 2.0 cm rainfall occurred. Participants were
observed in a public setting while walking with their smartphones
in the rain (Figure 2B), attempting to perform tasks of their own
choosing. These tasks included reading and replying to email, read-
ing news, texting friends, checking bus arrival times, and scrolling
a Facebook or Twitter feed. Our observations of people performing
these tasks lasted about 10 minutes per participant, for about 90
minutes of total observation time.

The rainwater interference was so bad that participants often
gave up on whatever particular task they were doing, switching to
other tasks only to encounter similar problems. Starting with a dry
smartphone screen, it took only about 20 seconds before rainwater
became a significant hindrance to successful interaction (Figure 2A).
Many taps on the screen went unrecognized, or were recognized
as occurring in locations far from the actual tap position. Single-
finger swipes were often mistaken for two-finger pinch actions that
inadvertently zoomed in on photos or maps.

To cope with these problems, participants engaged in a variety
of rainwater-thwarting behaviors. For example, participants often
wiped off their phone screens using their shirt or sweater, or the
side or back pocket of their pants. This wiping behavior resulted
in "water smear", a thin veneer of water spread evenly across the
smartphone screen. A few participants wiped not only their devices
but the tips of their thumbs, trying to removewater from their hands
as well as their hardware. It was clear from these observations that
rainwater indeed presents a significant situational impairment and
barrier to mobile interaction.

4 THE DESIGN OF RAINCHECK
In this section, we describe the design of RainCheck, detailing the
key choices that we made to overcome rainwater interference on
smartphone screens.

A B

Figure 2: (A) Rainwater on a smartphone screen after only 20 sec-
onds of exposure during a rain shower. The drops on the screen
cause significant interference when attempting to use the smart-
phone, rendering it almost unusable. (B) A woman walks in the
rain during one of our observations. Although this image might
suggest otherwise, it was actually raining quite hard at the time
this photo was taken. Note the wet pavement and puddles visible.

Incorrect Number of Touches

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p

Before Touch

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p

Figure 3: The user touches the screen with a single finger, but
the touchscreen is confused due to the presence of water and de-
tects two touch points (two red dots). However, the shape and
distribution of sensor values in the finger-touch area were very
different than those of water drops, giving us an opportunity for
improvement.

4.1 Gaining Access to Low-level Raw
Capacitance Data

In order to process the capacitive signature of rainwater, we had to
gain access to the low-level output from a smartphone touchscreen
driver. After surveying various smartphones that would make this
technically feasible, we chose to implement RainCheck on an LG
Nexus 5 running Android 5.0.2 with a Linux kernel 1 specifically
modified to expose the debug interface of a Synaptics ClearPad 3350,
the touchscreen driver. We obtained capacitive sensor values from
this programmatic interface: an 8-bit 15 × 27 pixel capacitive image
at 20 frames per second, in which each image pixel corresponds
to a 4.1 × 4.1 mm square on the screen [11]. The interface also
provided the inferred touch locations that were used by Android’s
application layer. With the debug interface, we visualized the raw
data and touch points provided by the firmware on the smartphone
to understand how the capacitive touchscreen reacts to water drops
or water smear. The next section describes our observations of the
interference caused.

4.2 Water Interference Pattern
To understand the way water interferes with our testbed smart-
phone, we systematically applied various water patterns mimicking
rainwater using an eye-dropper. Our resulting observations re-
vealed two types of sensing errors: sensing a phantom touch and
sensing incorrect touch positions. In sensing a phantom touch, the
smartphone treated some water drops as finger-touch points (Fig-
ure 3), which explains why sometimes a user’s single-touch was
interpreted as a two-finger pinch in our field observations. More-
over, in many cases, both fingers and touchscreens were wet, and
most modern touchscreens interpret the water to be the part of the
finger, so the inferred touch center shifts (Figure 4). This problem
is the second problem mentioned above, that of sensing incorrect
touch positions.

4.3 The RainCheck Prototype
RainCheck’s solution to the water interference problem has two
parts: (1) differentiating between water and human touch based
upon the characteristics of each, and (2) utilizing a disambiguating
1The modified kernel and dataset will be made open-source.

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

466

Touch Position Shifted

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p

Before Touch

,?123 .

a s d f g h j k l

z x c v b n m

q w e r t y u i o p

Figure 4: Apart from being detected as touch points, water drops
also affect the center of the touch area. When the user touches a
water drop and the touchscreen simultaneously (right), the touch-
position extracted from the blob’s center shifts because blob size
also includes the size of the water.

interaction technique in cases where differentiating between water
and a human finger fails.

4.3.1 Water vs. Human-Touch. From the low-level raw capaci-
tive data received from RainCheck’s modified kernel, we generated
one grayscale image per frame. Next, we extracted the potential
touch area by blurring and detecting blobs in the image. Then, we
analyzed characteristics of each identified blob to possibly detect a
difference between a blob representative of a water drop and blobs
typically formed by human touch. We extracted the blob’s shape,
size, and the distribution of the raw capacitive values covered by the
blob. Compared to real finger-touch points, a "touch point" made
by water had a lower peak sensor value, and the shape was smaller
and irregular (Figure 3, right). We devised a heuristic-based model
that used the peak sensor value, and the ratio of width and height
of each blob, to differentiate between water and finger-touch. Simi-
lar solutions were used and explored for the issue of unintended
touches caused by wrist, palm, forearm, or stylus on touchscreen
devices [2, 9, 10]. The "touch point" made by those body parts or
conductive devices, compared to the human finger touch, were
in more irregular or larger shapes. The detailed pseudo code of
RainCheck was shown in ??.

4.3.2 Adapting to Spurious Touch Events. A tap interaction must
produce a precise touch position; otherwise users cannot select
targets accurately. By contrast, swipes and other gestures require
relatively less precise touch positions because gestures unfold over
time, producing more data on which to base a smartphone’s re-
sponse. Therefore, to make tap interactions successful in the pres-
ence of rainwater, we applied a tap-then-swipe interaction, which
was similar to the approach presented in Escape [31], to improve
target selection while selectable objects are dense, to help users
select targets even with water interfering with the touch area.

When features are extracted from touch blobs, RainCheck tests
for abnormal touch events (such as unusual touch size, irregular
shape, or lower peak sensor values in the touch area); it then checks
if the touch area is covered by any selectable UI elements. Next,
RainCheck utilizes its tap-and-swipe selection technique to allow
users to select their intended target. For example, in Figure 1, the
water drop is covering keys "R", "T", "F", and "G". Once RainCheck
detects a touch within that water drop, it displays a pop-up that lets
the user select these keys by quickly swiping in different directions.

Thus, the selection is made by swiping, and the actual position of
the swipe is of relatively little importance, much like a marking
menu [13]. Figure 5 shows the control flow for RainCheck and the
control condition, discussed further in the next section 2.

Figure 5: The control flow of RainCheck and its various compo-
nents.

5 RAINCHECK EVALUATION
To evaluate the effectiveness of RainCheck, we conducted two stud-
ies to check whether RainCheck would improve (1) touch recogni-
tion, and (2) target selection performance in the presence of water.
For a laboratory evaluation, the consistency of the environment is
important, so we decided not to rely on actual outdoor rain and
instead apply water to a touchscreen surface in a controlled fashion
using a spray bottle.

5.1 Study 1: Gesture Performance
Our field observations indicated that most gesture recognition er-
rors with water drops or water smear on a touchscreen were due to
the smartphone recognizing the incorrect number of touch points.
In this study, we wanted to assess the accuracy of recognizing the
correct number of human finger-touch points while performing
gestures.

5.1.1 Participants. Twelve participants (8males, 4 females) rang-
ing in age from 20 to 29 years (M = 22.9, SD = 2.6) were recruited.
All participants had more than two years of experience with touch
screen smartphones. Eleven participants reported that they "some-
times" attempted to use their smartphones in the rain. Only one
participant had "little experience" with using smartphones in the
rain because, in her telling of it, she was not comfortable using a
wet touch screen.

5.1.2 Apparatus. Participants used our custom experiment soft-
ware on an LG Nexus 5 that has a 4.95-inch capacitive touch screen
with 1080 × 1920 pixels and our customized Linux kernel allowing
access the touchscreen debug interface. The application recorded
capacitive sensor values and touch points’ positions from the debug
interface at 20 frames per second.

2The RainCheck algorithm and touch data in our study will be made open-source.

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

467

5.1.3 Procedure. Participants were presented with six different
touch-gesture tasks in random order under two different environ-
ment settings, a dry touchscreen and a wet touchscreen. Each task
was presented 30 times, so each participant was required to perform
360 touch gestures in all (6 tasks × 30 times × 2 environments). To
simulate how people used their smartphones in the rain, we sprayed
water on the touchscreen with a spray bottle and then wiped the
screen with an Adidas water-resistant sports jacket (Figure 6). The
result was a realistic combination of water drops and water smear,
much like what appears in Figure 2.

With 12 participants, 6 touch gestures (each repeated 30 times),
and 2 environments, a total of 12×6×30×2 = 4320 touch gestures
were made in this portion of the study.

1 2 3

Figure 6: The procedure for each trial is shown above. The first
step was to spray water on the touchscreen. The second step was
to wipe the screen with the provided jacket. The third step was for
participants to perform the task shown on the screen.

5.1.4 Tasks. According to our field observations, people often
used messaging, navigation, and social media applications in the
rain, among others. Common touch gestures shown in these ap-
plications could be categorized into six types: Swipe Up, Swipe
Down, Swipe Right, Swipe Left, Pinch Open, and Pinch Closed. We
evaluated our system with these touch gestures (see Figure 7).

Swipe Up Swipe Down Swipe Right Swipe Left Pinch ClosedPinch Open

Figure 7: The six touch gestures participants performed in our first
study to evaluate the performance of RainCheck.

5.1.5 Results. The results of the touch-gesture tasks are shown
in Figure 8. In total, we recorded 4320 gesture trials for two en-
vironments, a dry touchscreen and a wet touch screen, i.e., 2160
trials for each. To get our data for these trials, we extracted only
screen frames that had human finger touches in them, and then sent
the corresponding touch points provided by the current system
to an Android simulator to measure their accuracy. Afterwards,
RainCheck processed the extracted frames and then sent the touch
points it detected to the Android simulator, too. In the wet condition,
error rates of the unmodified system and RainCheck were 21.34%
and 5.2%, respectively. Overall, RainCheck resulted in a 75.7% reduc-
tion in errors in the presence of water on the touchscreen (461 error

gestures vs. 112 error gestures). In the wet condition, normality
was violated (w = 0.822, p < .001). A nonparametric analysis was
therefore used. There was a significant effect of Method (RainCheck
- Regular) on error rate with Wilcoxon’s signed-rank test (p < .001).
RainCheck significantly outperformed than the regular system on
LG Nexus 5.

In the dry condition, the accuracy of RainCheck was 99.25%
over 2160 gestures, which is awfully close to the perfection of the
regular system (accuracy: 100%). In total, 16 cases were recognized
incorrectly by RainCheck (swipe right: 2, swipe left: 1, pinch closed:
5, pinch open: 5, swipe down: 3, and swipe up: 0). The reason for
these errors was that RainCheck filtered out some smaller and
ambiguous touch points in some frames while performing these
gestures, so the simulator could not recognize the correct gesture.
We believe that the situation can be avoided if we collect touch
point data from more users or apply a machine learning technique
in the future. Even still, we are quite close to perfect.

100.00%

78.26%

99.25% 94.81%

0%

20%

40%

60%
80%

100%

Dry Wet

Regular

RainCheck

Figure 8: The chart shows the accuracy of touch gestures with the
unmodified system and with RainCheck. With a wet touchscreen,
RainCheck decreased the error rate from 21.3% to 5.2%.

5.2 Study 2: Target Selection
In our second study, we wanted to evaluate RainCheck’s disam-
biguation technique for improving the accuracy of target selection
with water drops on the touchscreen.

5.2.1 Participants & Apparatus. We recruited five participants
(all males and right-handed, aged 22 to 27). Our apparatus was
much as before in Study 1. Specifically, in each target-selection trial,
our custom software recorded the number of touch attempts and
the trial completion time, so we could analyze and compare the
performance of RainCheck to the unmodified system. We measured
the task time from the first finger touch to when the finger was
lifted from the correct target.

5.2.2 Procedure & Tasks. Participants were presented with 9
buttons in a 3 × 3 grid layout (9). Each button had a size of 45 × 45
dp, which is the same as the size of a key on a typical Android soft
keyboard. The target button was displayed in a different color from
the other eight buttons, and appeared randomly at different places
within the grid layout. Participants were required to complete 30
tasks with and without RainCheck active, and in two different
environments (a wet vs. dry screen), for 120 trials in all.

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

468

One of our particular interest was the performance of RainCheck’s
target disambiguation technique, so participants could use tap-and-
swipe when RainCheck detected an unusual touch event in the wet
touchscreen condition.

A

E

FH

I

B

Figure 9: At left is the screenshot of the initial state of the task.
At right is when RainCheck detected an unusual touch area and
offered four potential selectable UI targets that were covered by the
touch.

5.2.3 Results. For the second study, RainCheck performed as
well as the unmodified system on the dry touchscreen (RainCheck:
M = 1.07 attempts, SD = 0.44; Regular: M = 1.03 attempts, SD =
0.33), and also outperformed the unmodified system on the wet
touchscreen (M = 1.11 attempts, SD = 0.68). For the unmodified
system without RainCheck, the average number of attempts in the
wet condition was 2.13 (SD = 5.00). Thus, in the wet condition,
RainCheck was 47.9% more accurate than the unmodified system.

Our results also showed that RainCheck’s average selection time
demonstrated the benefits of its target disambiguation technique.
Average selection times of the unmodified system and RainCheck
were 2.543 seconds (SD = 7.314) and 0.553 seconds (SD = 1.681),
respectively. RainCheck reduced the selection time by 80.0%, which
saved almost two seconds per task (Figure 10). For the second study,
although only 5 participants were recruited, we still reported the
statistical results. The paired samples t-test was used to analyze the
performance on completion time and the number of attempts for
the unmodified system with and without RainCheck. No significant
difference was found on either the completion time (t(4) = 3.42,
p = 0.026) or the number of attempts (t(4) = 2.42, p = 0.072). The
detectable effect might need more samples, but our small sample
demonstrated the promising result.

6 DISCUSSION
It is clear that RainCheck considerably improves gesture and touch
accuracy, and target selection time, in the presence of a wet touch-
screen. In other words, RainCheck performs as it was meant to.
Happily, even for dry touch screens, RainCheck does not seem to
"get in the way," performing just as well as an unmodified touch-
screen. Going further, an interesting finding was that two of our
five participants in the second study tried to avoid contact with wa-
ter while performing the target selection task. They reported that
they knew the water drops near the target buttons would probably

0.265

2.543

0.272 0.553
0
2
4
6
8
10

Dry Wet

Se
co
nd
s

Regular
RainCheck

Figure 10: Time taken (in seconds) for successful selection in our
second study. On average, RainCheck reduced the selection time
in the wet condition from about 2.5 seconds to 0.5 seconds, or by
80.0%. Error bars represent +1 standard deviation.

affect their touch accuracy, so they would keep their fingers away
from the water drops if the drops were close to the target. Although
we did not evaluate RainCheck for text entry, when asked, over
half of our participants agreed that our target selection technique
would improve touchscreen typing accuracy in the rain. In short,
participants’ experiences in our study generated optimism that
RainCheck could help them in the rain.

7 LIMITATION & FUTUREWORK
As with all studies, ours had limitations. Our RainCheck prototype
also had limitations. One limitation is that we did not evaluate the
performance of the proposed approach on different smartphones.
The performance might be affected by different hardware imple-
mentations of the capacitive sensing. Another limitation is that we
did not collect any multi-touch data to see whether multi-touch
would affect the performance of RainCheck. More participants in
a larger study would add validating support to RainCheck’s per-
formance. And implementing RainCheck on other devices beyond
the LG Nexus 5 are all ways in which this work could be extended
beyond these limitations.

Future studies could include investigating the effectiveness of
RainCheck in outdoor rainy conditions, even though these would
be rather uncontrollable. We could conduct a series of studies with
common mobile applications people use while walking, such as
messaging and navigation applications, to evaluate RainCheck’s
performance in real-world conditions.

Currently, we only used low-level raw sensor data from the capac-
itive touchscreen to infer finger-touches and improve touch accu-
racy. We could perhaps discover how to leverage a pressure-sensing
touchscreen to distinguish water, which would exert light pressure,
from finger touches exerting greater pressure on the screen.

8 CONCLUSION
We have presented RainCheck, a new touch-based interactive sys-
tem for commodity smartphones that reduces capacitive interfer-
ence caused by rainwater. RainCheck works by obtaining low-level
raw capacitance readings; detecting and filtering out unusual ca-
pacitance blobs using heuristics involving blob shape, size, and
pixel-value distribution; and triggering a precision target-selection
technique when detecting potential water interference with a user’s

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

469

tap interactions. The result is that for wet touchscreens, RainCheck
improves gesture accuracy by 75.7%, touch accuracy by 47.9%, and
target selection time by 80.0%. RainCheck demonstrates one way
in which the situational impairments caused by rainwater can be
successfully overcome.

9 ACKNOWLEDGEMENT
We thank all of our participants for their time and feedback. We
would also like to thank Vivek Shankar for his assistance and con-
tribution.

REFERENCES
[1] Pär-Anders Albinsson and Shumin Zhai. 2003. High Precision Touch Screen

Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’03). ACM, New York, NY, USA, 105–112. https://doi.org/10.
1145/642611.642631

[2] Michelle Annett, Anoop Gupta, and Walter F. Bischof. 2014. Exploring and
Understanding Unintended Touch During Direct Pen Interaction. ACM Trans.
Comput.-Hum. Interact. 21, 5, Article 28 (Nov. 2014), 39 pages. https://doi.org/10.
1145/2674915

[3] Hrvoje Benko, Andrew D. Wilson, and Patrick Baudisch. 2006. Precise Selection
Techniques for Multi-touch Screens. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’06). ACM, New York, NY, USA,
1263–1272. https://doi.org/10.1145/1124772.1124963

[4] Xiang ’Anthony’ Chen, Tovi Grossman, and George Fitzmaurice. 2014.
Swipeboard: A Text Entry Technique for Ultra-small Interfaces That Supports
Novice to Expert Transitions. In Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology (UIST ’14). ACM, New York, NY, USA,
615–620. https://doi.org/10.1145/2642918.2647354

[5] Cypress.com. 2018. TrueTouchÂő Touchscreen Controllers | Cypress Semicon-
ductor. Retrieved January 21, 2018 from http://www.cypress.com/products/
truetouch-touchscreen-controllers

[6] Mayank Goel, Leah Findlater, and Jacob Wobbrock. 2012. WalkType: Using
Accelerometer Data to Accomodate Situational Impairments in Mobile Touch
Screen Text Entry. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’12). ACM, New York, NY, USA, 2687–2696. https:
//doi.org/10.1145/2207676.2208662

[7] Mayank Goel, Jacob Wobbrock, and Shwetak Patel. 2012. GripSense: Using
Built-in Sensors to Detect Hand Posture and Pressure on Commodity Mobile
Phones. In Proceedings of the 25th Annual ACM Symposium on User Interface
Software and Technology (UIST ’12). ACM, New York, NY, USA, 545–554. https:
//doi.org/10.1145/2380116.2380184

[8] Aamir Haider and Nowell Solish. 2005. Focal hyperhidrosis: diagnosis and
management. CMAJ 172, 1 (2005), 69–75. https://doi.org/10.1503/cmaj.1040708
arXiv:http://www.cmaj.ca/content/172/1/69.full.pdf

[9] KenHinckley, Michel Pahud, Hrvoje Benko, Pourang Irani, François Guimbretière,
Marcel Gavriliu, Xiang ’Anthony’ Chen, Fabrice Matulic, William Buxton, and
Andrew Wilson. 2014. Sensing Techniques for Tablet+Stylus Interaction. In
Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology (UIST ’14). ACM, New York, NY, USA, 605–614. https://doi.org/10.
1145/2642918.2647379

[10] Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Rodenhouse,
Andy Wilson, Hrvoje Benko, and Bill Buxton. 2010. Pen + Touch = New Tools.
In Proceedings of the 23Nd Annual ACM Symposium on User Interface Software
and Technology (UIST ’10). ACM, New York, NY, USA, 27–36. https://doi.org/10.
1145/1866029.1866036

[11] ChristianHolz, Senaka Buthpitiya, andMarius Knaust. 2015. Bodyprint: Biometric
User Identification on Mobile Devices Using the Capacitive Touchscreen to
Scan Body Parts. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI ’15). ACM, New York, NY, USA, 3011–3014.
https://doi.org/10.1145/2702123.2702518

[12] Shaun K. Kane, Jacob O. Wobbrock, and Ian E. Smith. 2008. Getting off the
Treadmill: Evaluating Walking User Interfaces for Mobile Devices in Public
Spaces. In Proceedings of the 10th International Conference on Human Computer
Interaction with Mobile Devices and Services (MobileHCI ’08). ACM, New York, NY,
USA, 109–118. https://doi.org/10.1145/1409240.1409253

[13] Gordon Kurtenbach and William Buxton. 1994. User Learning and Performance
with Marking Menus. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’94). ACM, New York, NY, USA, 258–264. https:
//doi.org/10.1145/191666.191759

[14] Min Lin, Rich Goldman, Kathleen J. Price, Andrew Sears, and Julie Jacko. 2007.
How do people tap when walking? An empirical investigation of nomadic data

entry. International Journal of Human-Computer Studies 65, 9 (2007), 759 – 769.
https://doi.org/10.1016/j.ijhcs.2007.04.001

[15] Alexander Mariakakis, Mayank Goel, Md Tanvir Islam Aumi, Shwetak N. Patel,
and Jacob O. Wobbrock. 2015. SwitchBack: Using Focus and Saccade Tracking to
Guide Users’ Attention for Mobile Task Resumption. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 2953–2962. https://doi.org/10.1145/2702123.2702539

[16] Microchip.com. 2018. 2D maXTouch. Retrieved January 21,
2018 from https://www.microchip.com/design-centers/capacitive-touch-sensing/
2d-touch/maxtouch

[17] Sachi Mizobuchi, Mark Chignell, and David Newton. 2005. Mobile Text Entry: Re-
lationship Between Walking Speed and Text Input Task Difficulty. In Proceedings
of the 7th International Conference on Human Computer Interaction with Mobile
Devices &Amp; Services (MobileHCI ’05). ACM, New York, NY, USA, 122–128.
https://doi.org/10.1145/1085777.1085798

[18] Stephen Oney, Chris Harrison, Amy Ogan, and Jason Wiese. 2013. ZoomBoard:
A Diminutive Qwerty Soft Keyboard Using Iterative Zooming for Ultra-small
Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA, 2799–2802. https://doi.org/10.
1145/2470654.2481387

[19] Antti Oulasvirta, Sakari Tamminen, Virpi Roto, and Jaana Kuorelahti. 2005.
Interaction in 4-second Bursts: The Fragmented Nature of Attentional Re-
sources in Mobile HCI. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’05). ACM, New York, NY, USA, 919–928.
https://doi.org/10.1145/1054972.1055101

[20] Jason Pascoe, Nick Ryan, and David Morse. 2000. Using While Moving: HCI
Issues in Fieldwork Environments. ACM Trans. Comput.-Hum. Interact. 7, 3 (Sept.
2000), 417–437. https://doi.org/10.1145/355324.355329

[21] Zhanna Sarsenbayeva, Jorge Goncalves, Juan García, Simon Klakegg, Sirkka
Rissanen, Hannu Rintamäki, Jari Hannu, and Vassilis Kostakos. 2016. Situational
Impairments to Mobile Interaction in Cold Environments. In Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’16). ACM, New York, NY, USA, 85–96. https://doi.org/10.1145/2971648.
2971734

[22] Martin Schedlbauer and Jesse Heines. [n. d.]. Schedlbauer, M. and Heines, J.
Selecting While Walking Keywords Selecting While Walking: An Investigation
of Aiming Performance in a Mobile Work Context.

[23] Andrew Sears and Ben Shneiderman. 1991. High precision touchscreens: design
strategies and comparisons with a mouse. International Journal of Man-Machine
Studies 34, 4 (1991), 593 – 613. https://doi.org/10.1016/0020-7373(91)90037-8

[24] Andrew Sears and Mark Young. 2003. The Human-computer Interaction Hand-
book. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, Chapter Physical Dis-
abilities and Computing Technologies: An Analysis of Impairments, 482–503.
http://dl.acm.org/citation.cfm?id=772072.772105

[25] Tomoki Shibata, Daniel Afergan, Danielle Kong, Beste F. Yuksel, I. Scott MacKen-
zie, and Robert J.K. Jacob. 2016. DriftBoard: A Panning-Based Text Entry Tech-
nique for Ultra-Small Touchscreens. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology (UIST ’16). ACM, New York, NY, USA,
575–582. https://doi.org/10.1145/2984511.2984591

[26] STMicroelectronics. 2018. Touchscreen Controllers. Retrieved January 21, 2018
from http://www.st.com/en/mems-and-sensors/touchscreen-controllers.html?
querycriteria=productId=SC1717

[27] Daniel Vogel and Patrick Baudisch. 2007. Shift: A Technique for Operating Pen-
based Interfaces Using Touch. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’07). ACM, New York, NY, USA, 657–666.
https://doi.org/10.1145/1240624.1240727

[28] Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell, and Chia Shen.
2007. Lucid Touch: A See-through Mobile Device. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology (UIST ’07).
ACM, New York, NY, USA, 269–278. https://doi.org/10.1145/1294211.1294259

[29] JacobO.Wobbrock. 2006. The Future ofMobile Device Research inHCI. Retrieved
May 2, 2018 from http://faculty.washington.edu/wobbrock/pubs/chi-06.05.pdf

[30] T. Yamabe and K. Takahashi. 2007. Experiments in Mobile User Interface Adap-
tation for Walking Users. In The 2007 International Conference on Intelligent
Pervasive Computing (IPC 2007). 280–284. https://doi.org/10.1109/IPC.2007.94

[31] Koji Yatani, Kurt Partridge, Marshall Bern, and Mark W. Newman. 2008. Escape:
A Target Selection Technique Using Visually-cued Gestures. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’08). ACM, New
York, NY, USA, 285–294. https://doi.org/10.1145/1357054.1357104

[32] Koji Yatani and Khai N. Truong. 2009. An evaluation of stylus-based text entry
methods on handheld devices studied in different user mobility states. Pervasive
and Mobile Computing 5, 5 (2009), 496 – 508. https://doi.org/10.1016/j.pmcj.2009.
04.002

[33] Yeliz Yesilada, Simon Harper, Tianyi Chen, and Shari Trewin. 2010. Small-device
users situationally impaired by input. Computers in Human Behavior 26, 3 (2010),
427 – 435. https://doi.org/10.1016/j.chb.2009.12.001

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

470

https://doi.org/10.1145/642611.642631
https://doi.org/10.1145/642611.642631
https://doi.org/10.1145/2674915
https://doi.org/10.1145/2674915
https://doi.org/10.1145/1124772.1124963
https://doi.org/10.1145/2642918.2647354
http://www.cypress.com/products/truetouch-touchscreen-controllers
http://www.cypress.com/products/truetouch-touchscreen-controllers
https://doi.org/10.1145/2207676.2208662
https://doi.org/10.1145/2207676.2208662
https://doi.org/10.1145/2380116.2380184
https://doi.org/10.1145/2380116.2380184
https://doi.org/10.1503/cmaj.1040708
http://arxiv.org/abs/http://www.cmaj.ca/content/172/1/69.full.pdf
https://doi.org/10.1145/2642918.2647379
https://doi.org/10.1145/2642918.2647379
https://doi.org/10.1145/1866029.1866036
https://doi.org/10.1145/1866029.1866036
https://doi.org/10.1145/2702123.2702518
https://doi.org/10.1145/1409240.1409253
https://doi.org/10.1145/191666.191759
https://doi.org/10.1145/191666.191759
https://doi.org/10.1016/j.ijhcs.2007.04.001
https://doi.org/10.1145/2702123.2702539
https://www.microchip.com/design-centers/capacitive-touch-sensing/2d-touch/maxtouch
https://www.microchip.com/design-centers/capacitive-touch-sensing/2d-touch/maxtouch
https://doi.org/10.1145/1085777.1085798
https://doi.org/10.1145/2470654.2481387
https://doi.org/10.1145/2470654.2481387
https://doi.org/10.1145/1054972.1055101
https://doi.org/10.1145/355324.355329
https://doi.org/10.1145/2971648.2971734
https://doi.org/10.1145/2971648.2971734
https://doi.org/10.1016/0020-7373(91)90037-8
http://dl.acm.org/citation.cfm?id=772072.772105
https://doi.org/10.1145/2984511.2984591
http://www.st.com/en/mems-and-sensors/touchscreen-controllers.html?querycriteria=productId=SC1717
http://www.st.com/en/mems-and-sensors/touchscreen-controllers.html?querycriteria=productId=SC1717
https://doi.org/10.1145/1240624.1240727
https://doi.org/10.1145/1294211.1294259
http://faculty.washington.edu/wobbrock/pubs/chi-06.05.pdf
https://doi.org/10.1109/IPC.2007.94
https://doi.org/10.1145/1357054.1357104
https://doi.org/10.1016/j.pmcj.2009.04.002
https://doi.org/10.1016/j.pmcj.2009.04.002
https://doi.org/10.1016/j.chb.2009.12.001

A RAINCHECK ALGORITHM

Data: Raw Capacitive sensor values & Touch points reported
by the touch controller

Result: Determine the touch point made by rainwater or
fingers

/* Exact values of these initialized variables
were determined by touch data from the pilot
study, which can be varied with different
hardware. */

[1] Rf <- The range of the aspect ratio of the finger touch data;
[2] Pf <- The average peak capacitance sensor value of the finger

touch data;
[3] STDf <- The standard deviation of the sensor value of the

finger touch data;
[4] RainCheck(touch_point, sensor_vals){

/* get statistics data from sensors around the

touch point. */

[5] touch_area <- connected_component_algo(sensor_vals,
touch_point->pos);

[6] peak_val <- getPeakVal(touch_area);
[7] val_std <- getStdOfSensorVal(touch_area);
[8] aspect_ratio <- getAspectRatio(touch_area);

/* Check the stats of the capacitance value. */

[9] if peak_val is less than (Pf - STDf) then
/* The touch point is not a finger touch. */

[10] end
/* Check the aspect ratio of the touch area. */

[11] if aspect_ratio is not in Rf then
[12] if peak_val is larger than (Pf - STDf) then

/* The finger contacts with the water, so
the peak value is in the range of
human touch, but the aspect ratio is
affected by the rainwater. */

[13] enableSwipeInteraction(touch_point);
[14] else

/* The touch point is not a finger touch.
*/

[15] end
/* The touch point is a finger touch. */

[16] end

Poster Session 2 ICMI’18, October 16-20, 2018, Boulder, CO, USA

471

	Abstract
	1 Introduction
	2 Related Work
	2.1 Capacitive Sensing Technologies
	2.2 Situational Impairments
	2.3 Precise Selection Techniques for Touchscreens

	3 Observations of Smartphone Interactions In the Rain
	4 The Design of RainCheck
	4.1 Gaining Access to Low-level Raw Capacitance Data
	4.2 Water Interference Pattern
	4.3 The RainCheck Prototype

	5 RainCheck Evaluation
	5.1 Study 1: Gesture Performance
	5.2 Study 2: Target Selection

	6 Discussion
	7 Limitation & Future Work
	8 Conclusion
	9 Acknowledgement
	References
	A RainCheck Algorithm

