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ABSTRACT
Tracking a user’s gaze on smartphones offers the potential for
accessible and powerful multimodal interactions. However, phones
are used in a myriad of contexts and state-of-the-art gaze models
that use only the front-facing RGB cameras are too coarse and do
not adapt adequately to changes in context. While prior research
has showcased the efficacy of depth maps for gaze tracking, they
have been limited to desktop-grade depth cameras, which are more
capable than the types seen in smartphones, that must be thin and
low-powered. In this paper, we present a gaze tracking system that
makes use of today’s smartphone depth camera technology to adapt
to the changes in distance and orientation relative to the user’s face.
Unlike prior efforts that used depth sensors, we do not constrain
the users to maintain a fixed head position. Our approach works
across different use contexts in unconstrained mobile settings. The
results show that our multimodal ML model has a mean gaze error
of 1.89 cm; a 16.3% improvement over using RGB data alone (2.26 cm
error). Our system and dataset offer the first benchmark of gaze
tracking on smartphones using RGB+Depth data under different
use contexts.

CCS CONCEPTS
•Human-centered computing→Mobile devices; •Computing
methodologies→ Computer vision.
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1 INTRODUCTION
Computer interfaces with the ability to track a user’s on-screen
gaze location offer the potential for more accessible and powerful
multimodal interactions [10, 23, 24, 32, 50], perhaps one day even
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supplanting the venerable cursor. While useful for desktop com-
puting, gaze also promises to be a powerful way to interact with
phones, especially given the need to adapt to a variety of usage
contexts (e.g., inability to use the touchscreen with encumbered
hands). Specialized gaze tracking hardware – either worn [20] or
placed in the environment [41] – can track gaze with very high
resolution i.e., 1.1 mm (0.45°) but, the need for specialized equip-
ment is a significant barrier for consumer adoption. When relying
on existing onboard hardware, research has primarily focused on
user-facing RGB cameras. Unfortunately, gaze models utilizing this
RGB data are too coarse for interactions with many user interface
widgets, which are generally small on mobile devices. To help close
this gap, researchers have started assessing the value of depth cam-
eras to improve performance [30, 34, 55], but all research to date
has focused on desktop-grade depth cameras (e.g., Microsoft Kinect
V2 [54] , Intel Real Sense [22]). These sensors are much more capa-
ble than the depth cameras seen in smartphones, which must be
very thin and comparatively lower powered. Furthermore, much of
this prior RGB+Depth (RGBD henceforth) gaze research had users
maintain their head position in a highly constrained way (e.g., chin
rest [37, 39]). This rigid requirement is at odds with the usual way
a typical user interacts with a phone while walking, riding public
transport, carrying handbags, etc. Thus, it is important to build a
gaze tracker that adapts to a user’s changing context, uses existing
hardware, and provides usable resolution.

This paper presents a gaze tracker that uses an off-the-shelf
phone’s front-facing RGB and depth camera. We collected data
from and implemented our system in recent Apple iPhones (X and
above), which feature a 1080p user-facing camera and Apple’s struc-
tured light TrueDepth camera (similar to the technology used in
the Kinect V1 [54] and earlier PrimeSense models). Our mobile
RGBD dataset of 50 participants (which we make freely available
at https://github.com/FIGLAB/RGBDGaze) is the first of its kind,
offering RGBD data paired with user gaze location across a variety
of use contexts. We implemented a CNN model based on a spatial
weights structure to efficiently fuse the RGB and depth modali-
ties. Our model achieves 1.89 cm on-screen euclidean error on our
dataset in a leave-one-participant-out evaluation, showing a signif-
icant improvement over existing gaze-tracking methods in mobile
settings. This result reaffirms the utility of fusing RGB and depth
data, and offers the first benchmark for smartphone-based RGBD
gaze tracking while a user is not simply sitting.

2 RELATEDWORK
Gaze estimation is a well-studied field in computer science. For a
full survey, refer to [4, 12]. Many approaches have been explored
ranging from head-mounted devices [2, 27, 38, 42, 43, 46] to external
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Table 1: Comparison of our system with prior gaze tracking work. Grey-colored rows denote systems benchmarked using our
dataset (detailed in Section 5.3). Unconstrained studies are those where the distance and/or angle between the capturing device
and user was not static.

System Capture Modality Mobile
Device

Unconstrained
Study

Calibration
–Free Mean Gaze ErrorRGB Depth

Columbia Gaze [37] ✓ -
UT MultiView [39] ✓ ✓ 6.5°

ETH-XGaze [51] ✓ ✓ 4.7°
MPII Gaze [52] ✓ ✓ ✓ 6.3°
RT-GENE [14] ✓ ✓ ✓ 7.7°
Gaze360 [21] ✓ ✓ ✓ 13.5°

Wang and Ji [45] ✓ ✓ ✓ 4.0°
Zhou et al. [55] ✓ ✓ ✓ 1.99°
EyeDiap [34] ✓ ✓ ✓ ✓ 8.1°

ShanghaiTechGaze+ [30] ✓ ✓ ✓ ✓ 3.87 cm
EyeTab [47] ✓ ✓ ✓ 2.58 cm

Valliappan et al. [44] ✓ ✓ ✓ 0.46 cm
EyeMU [24] ✓ ✓ ✓ 1.7 cm
iTracker [25] ✓ ✓ ✓ 1.34 cm

iMon [18] ✓ ✓ ✓ ✓ 1.57 cm
TabletGaze [17] ✓ ✓ ✓ ✓ 3.17 cm

iTracker [25] ✓ ✓ ✓ ✓ 2.77 cm
Apple ARKit [7] ✓ ✓ ✓ ✓ 6.38 cm
　Our System ✓ ✓ ✓ ✓ ✓ 1.89 cm

sensors such as cameras in the environment [1, 33, 41]. In particular,
recent advancement in machine and deep learning has significantly
improved the accuracy of the image-based gaze tracking systems
[44, 52]. In this section, we focus on gaze methods that most closely
relate to our efforts, and in particular, works that present a gaze
dataset or run on commodity smartphones.

2.1 Gaze Tracking Across Capture Modalities
Prior works have collected various datasets for training and eval-
uating the data-driven models, which are summarized in Table 1.
Early works [37, 39] included the use of a chin rest to constrain
the head movements of the participants. Following works tackled
more naturalistic movement scenarios such as users interacting
with their laptops [52] and even more challenging free-viewing
tasks [14, 21]. With the advent of sophisticated cameras on mobile
devices, researchers have gathered datasets tailored for these spe-
cific form factors. For instance, GazeCapture [25] collected data
on smartphones employing a pool of crowd workers. Similarly,
TabletGaze [17] collected data on a tablet for four different types
of use contexts: standing, sitting, lying, and slouching.

While most of these works assume RGB images as inputs for
their models, several works have shown that the addition of depth
channel can improve the accuracy. Originally, the depth information
is used to obtain an accurate head pose or iris position, which is
then utilized to estimate gaze in a model-based manner [9, 15, 19,
29, 40, 48, 55]. Along these lines, [30, 34] make use of an external
Microsoft Kinect Depth sensor [54] or Intel RealSense RGBD sensor
[22] to collect RGB and depth data from their participants as they
view a 3D gaze target. Lian et al. [30] showed that the addition of

the depth channel decreased the error by roughly 18% (from 4.67
cm to 3.87 cm error) on the EyeDiap [34] dataset. Similarly, Xiong et
al. [48] showed 34% decrease in error by introducing depth to RGB
(from 3.2° to 2.1°). However, to the best of our knowledge, there
has been no prior work that has made use of depth cameras found
in smartphones, which are low-powered and much less precise
compared to their desktop-grade counterparts. Furthermore, the
smartphone form-factor is inherently more unconstrained due to
the mobile nature of the user and device.

2.2 Gaze Tracking on Mobile Devices
With the proliferation of mobile devices, their increasing screen
sizes, and advances in camera capture technology, gaze estimation
on smartphones has received significant attention. They can be
broadly categorized into systems that require per-user calibration
or are calibration-free.

Systems with per-user calibration tend to be more accurate as
they have access to more personalized environmental and user data.
Approaches such as [24], [25] and [44] achieve an error of 1.7 cm,
1.34 cm and 0.46 cm respectively using RGB cameras. Calibration-
free techniques are more generalizable and can be used out of the
box. These include RGB systems such as EyeTab [47] and TabletGaze
[17] with a tracking error of 2.58 cm and 3.17 cm respectively. The
demand for gaze tracking in smartphones has led to eye tracking
API’s for developers, such as the ARFaceAnchor module of Apple
ARKit 4 [7].

Recently, Huynh et al. [18] built a new ML model trained using
the GazeCapture dataset. While this model outperforms our system
in terms of mean gaze error, the Gaze Capture dataset is limited
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Figure 1: Examples of the four use contexts we captured during data collection (standing, walking, sitting, and lying). Left-
bottom insets are depth images rendered in the Turbo colormap. Right-bottom insets are views from the user-facing camera.

to older iPhones (iPhone 6S and below) with smaller screens and
does not include data while the user is mobile. In contrast, we
record data across four use contexts and on larger recent iPhones
(iPhone X and above). Thus, a direct comparison of performance
between the two models is difficult. The primary demonstration
of our approach is the value of depth information while tracking
gaze in a mobile context. While researchers have looked at depth
from the perspective of larger and stationary computers, we posit
that depth is more valuable when the user has greater physical
freedom. No prior work has explored the fusion of RGB and depth
imagery captured using mobile device hardware (Table 1). User-
facing depth sensors are becoming increasingly common (e.g., Apple
iPhone 12, Google Pixel 4, Samsung Galaxy S10 Plus), opening the
opportunity to significantly improve mobile gaze tracking accuracy.
Our research ties these multimodal sources together to provide a
robust and state-of-the-art smartphone-based gaze tracking system.

3 RGB+DEPTH DATASET & COLLECTION
We collected a first-of-its-kind dataset of RGBD on mobile devices.
For data collection, we created an iOS application capable of record-
ing and uploading gaze tracking data. Our application runs on
Apple iPhone X and above, as they all feature a high resolution
front-facing RGB camera and a TrueDepth camera (640 × 480 depth
map interpolated from a 170 × 170 IR dot pattern). For our data
collection, we recruited 50 participants (mean age 25 years, 34 male,
16 female). Fourteen of them wore glasses during the data collec-
tion. Twenty of the participants were recruited through in-class
recruitment and the remainder of the 30 were recruited using an
online sign-up form posted on various social media sites. The app
was delivered via TestFlight.

The custom iOS application asked participants to look at a target
(red dot) that was moving on the screen. While the user gazed at
the target, synchronized RGB and depth imagery was logged at
approximately 8 Hz, along with the ARKit gaze prediction (which
we capture as a state-of-the-art commercial benchmark). The speed
of the dot movement was varied to add diversity. The data collection
was paused when the face was not detected using the Apple Vision
Framework [6]. In a similar way to GazeCapture [25], we recorded

device motion (9-axis IMU) sensor data synchronized to image data.
While we did not use this sensor data in our study, this could be a
useful resource in future work.

While using the app, the target dot was animated to cover various
locations on the screen (Figure 2(a)). Specifically (and similar to
[17, 25, 49]), we first pre-determined 5 × 7 = 35 fixed locations
(Figure 2(b)), and then the dot repeatedly moved linearly (vertically,
horizontally, and diagonally) from one location to another in a
random fashion such that it covered each location four times. In
addition, we implemented an “undo” functionality that lets the
participant jump back to the previous gaze location (in case they
were not paying attention or did not follow the target). The “undo”
button shown in Figure 2(c) was hiddenwhile the target wasmoving
unless the participant tapped anywhere on the screen to stop its
animation.

undo

(a) (b) (c)

Figure 2: Our application for gaze data collection. (a) The
target (red dot) moves around the screen. (b) The screen is
divided by 35 fixed locations (illustrated here, but hidden
from users) and the target moves from one to another. (c)
Participants are able to stop by tapping the screen and “undo”
a trial by pressing the button.
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Figure 3: Overview of our multimodal deep learning architecture. Input is the RGB and depth image of the user’s face, with the
2D gaze location on the screen as output. The spatial attention maps of the corresponding RGB and depth maps are visualized
in red heatmaps (darker color intensity denotes higher attention value).

To ensure data reliability, we followed an approach similar to
Krafka et al. [25]. First, during data recording, the app was kept
in Airplane Mode to avoid any distractions via notifications. We
further monitor user attention to ensure constant engagement with
the application. This is done by introducing a color check mecha-
nism during the task. Specifically, the color of the inner center of
the moving dot changed to either white, green, or blue randomly
during each animation (motion from one target gaze location to
another). Users needed to perform a tapping action according to the
color; tap nowhere if it was white, tap the right side of the screen
if it was green, and tap the left side if it was blue. If they failed
this color check, they were warned and the failed sequence was
repeated.

The study consisted of four sessions spanning four distinct, yet
common use contexts: standing, walking, sitting, and lying down
(Figure 1). During each session, the participants were not given
any specific instructions on how they should hold the device. We
note that they routinely changed hands and arm positions during
the sessions. Each collection session lasted for approximately four
minutes, and the order of the sessions was randomized for each
participant. The study took roughly 20 minutes and participants
were compensated with $10 USD for their time. We also did not
control for the environment, time of day or illumination during the
data collection period. This led to high variability of data, critical
in aiding the development of a robust, calibration-free gaze tracker.

We pruned the collected dataset by removing data points where
the participants blinked. For this we employed an eye-aspect-ratio
method [13]. Roughly 2% of our data consisted of blinks, which
were dropped from analysis. In total, our final dataset consisted of
160,120 data points across 50 participants.

4 IMPLEMENTATION
4.1 Network Architecture
We developed a multimodal learning-based method for estimating
a user’s gaze on a smartphone. We first crop the user’s face using
the Apple Vision Framework [6]. The cropped face (448 × 448 pix-
els) in RGB and depth views serve as the input to our multi-input
Convolutional Neural Network (CNN). The output is the predicted
2D gaze location in the screen coordinate frame of the smartphone.
The overview of our CNN can be seen in Figure 3. For our image-
based feature extractor, we make use of spatial attention [31, 53]
neural networks. This helps assign different information weights
to different regions of the facial image. For example, it will auto-
matically assign higher weights to the eyes or rather different parts
of the eyes would be weighted differently based on their informa-
tion entropy in the CNN. Prior work has found such approaches
[53] to be more accurate and computationally less intensive than
those that crop different regions and feed them individually to a
model [25]. We warm-start our RGB and depth convolutional fea-
ture extractors (Figure 3 pink color) with AlexNet [26] weights. The
embedding is then passed to three fully-connected layers with the
ReLU activation, outputting the final two-dimensional gaze value.

4.2 Training Protocol
The model is implemented with PyTorch 1.9.1 [35]. The RGB part
of the model is first trained with the GazeCapture dataset while the
depth part is initialized without any pretraining. We use a batch
size of 16 and update the model weights using the SGD optimizer
[8] with the initial learning rate 0.0005, the momentum 0.9, the
weight decay 0.0001. The learning rate is decayed by 0.1 for every
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Figure 4: Overall accuracy of our approach across different data input modalities (RGB and depth) and use contexts (sitting,
standing, walking and lying). The error bars are standard error.

five epochs. We use the mean squared error between the ground
truth and predicted gaze points as a loss function. We train our
model up to 20 epochs on an NVIDIA GeForce GTX 1080 Ti GPU,
and it takes approximately 12 hours to train one fold in leave-one-
participant-out procedure.

4.3 On-Device Model
We deployed our model in a real-time iOS application. We first
converted our trained PyTorch model to Core ML using Apple’s
CoreMLToolkit [5]. A pair of synchronized RGB and depth frames
are then pre-processed, which includes finding the face crop using
Apple’s Vision Framework [6] and normalizing the data between
-1 and 1. This data is then sent to our CNN for prediction. On the
iPhone 12 Pro Max, our model runs at 7 fps with an average latency
of 121.3 ms (SD = 9.2 ms) from captured photo to gaze prediction.
Using RGB alone, our system has a latency of 85.3 ms (SD = 7.4 ms)
and runs at 10 fps. The tracking can run continuously for around
3.5 hours on the iPhone 12 Pro (battery capacity of 10.8 Wh). The
model outputs a 2D gaze prediction, which is plotted on the screen.
As a comparison point, Apple’s Animoji feature, which digitizes
people’s faces and tracks their eyes, runs with a latency of around
∼110 ms on an iPhone 12 Pro [3]. Similar to data collection, the
predictions are paused when the face is not detected by the Apple
Vision Framework [6]. Please refer to the Video Figure for a real-
time demo.

5 RESULTS AND DISCUSSION
In this section, we evaluate the efficacy of our multimodal model
on our RGBD dataset. We first compute the performance metrics of
our system across different input data modalities and use contexts,
and then compare our system to RGB-based, state-of-the-art gaze
tracking methods.

5.1 Overall Accuracy
To evaluate the efficacy of ourmodel, we follow a leave-one-participant-
out protocol. The model is calibration-free, as no per-participant
data is shared between the splits. Overall, our model achieves a
euclidean gaze error of 1.89 cm (SD = 1.09 cm) when using RGBD
data (Figure 4 far-right chart).

Upon inspection, we find that our RGBD model has a very high
error when the eyes are partially closed or occluded (by the user’s
hair, glasses frame, hands, etc.). In these cases, it is impossible to
resolve a full view of both eyes and the model falls back on head
pose estimation for gaze. Other cases of error include poor light-
ing conditions, strong ocular reflections and motion blur. Figure 5
showcases these sample error cases of the model.

To test the performance impact of each data modality, we trained
the following model variants: depth-only, RGB-only, and RGBD.
Figure 4 summarizes this result. Our RGB-only model has a eu-
clidean error of 2.26 cm (SD = 1.27 cm), which falls to 1.89 cm (SD
= 1.09 cm) with the addition of depth data. Anecdotally, upon visu-
alizing the spatial attention maps of our model (Figure 3), we find
that the RGB attention model assigns a higher weight to the two
eyes, thus focusing on eye gaze; while the depth model assigns a
higher weight to the central region and edge of the face, thereby
focusing on head pose.

6.01 cm 6.19 cm 5.18 cm 5.97 cm

Poor Lighting Eyes Closed Reflection Motion Blur

7.18 cm

Self Occlusion

Figure 5: Example images where our RGBD Gaze model had
high error. Euclidean error is noted below each image.
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5.2 Effect of Use Context on Accuracy
Different use contexts result in different body postures [3] and
face visibility [17], and also introduce artifacts such as motion blur.
When we test our model across different use contexts (see Figure 4,
blue bars) using the leave-one-participant-out protocol, we find
that lying has the highest error (2.01 cm, SD = 1.18 cm) while sitting
and standing have the lowest error (1.83 cm, SD = 1.10 cm and
1.83 cm, SD = 1.01 cm). This is in line with prior work [17] and can
be attributed to the least facial visibility for the lying down context.
Compared to standing and sitting, walking has a relatively lower
accuracy, that is, 1.91 cm (SD = 1.08 cm). This can be attributed to
motion blur and head motion caused due to the movement of the
smartphone in the walking scenario.

Prior work has successfully demonstrated the detection of dif-
ferent coarse body poses/activities (e.g., sitting, standing, running,
walking, lying down) using smartphone motion data [3, 11, 28, 36].
To quantify the performance effect of each use context, we tested
the performance of a per-context calibrated model. Here we vali-
date the model on data from only that particular context. Overall,
this reduces error by 5.3% (broken out by use context in Figure 4,
green bars).

5.3 Comparison with Prior Work
A summary of comparative prior works can be found in Table 1. To
the best of our knowledge, no prior work has made use of RGBD on
smartphones for gaze estimation. We therefore benchmark our ap-
proach with two state-of-the-art RGB-based systems: Apple ARKit 4
ARFaceAnchor model [7] and iTracker [25]. Apple’s ARKit provides
an easy-to-integrate library for developers, and the iTracker model
has been trained on a multitude of mobile devices (iPhone 4-6, iPad
Pro, iPad Air). These two systems were run on the same data as our
own model. ARKit and iTracker achieve a mean euclidean error of
6.38 cm and 2.77 cm, respectively. In contrast, our model, making
use of RGBD, offered a much lower euclidean error of 1.89 cm.

To test the efficacy of our RGB spatial attention model, we bench-
mark it on the GazeCapture test dataset utilized by iTracker [25].
iTracker achieves an error of 2.04 cm (without any data augmen-
tation) on their dataset. Our RGB-only model achieves a similar
error of 2.03 cm on the dataset (vs. 2.26 cm on our test dataset). This
dip can be attributed to the varying use contexts and challenging
capture scenarios of our dataset as well as the larger screen size
of the devices used. We also find that our model achieved better
accuracies compared to tablet-based gaze estimation works such as
TabletGaze [17] and EyeTab [47], which reported an error of 3.17 cm
and 2.58 cm respectively. Note that these comparisons are provided
as a reference, as all these methods were tested on different datasets.

6 OPEN SOURCE MODEL & DATA
To enable future research to build on our system and contribute to
this domain, we have made our code, models, and dataset freely
available at https://github.com/FIGLAB/RGBDGaze. Our synchro-
nized RGB and depth dataset is the first of its kind for mobile
devices. It also labels each segment by user activity context, along
with synchronized 9-axis IMU data. We thank our participants for
their permission to share this data.

7 LIMITATIONS & FUTUREWORK
While the accuracies of our system are promising, there are several
key limitations that will need to be overcome before it is ready for
commercial adoption. First is the accuracy of the system. Even with
a calibration-free gaze error of under 2 cm, the accuracy falls short
of the sub-millimeter accuracy afforded by dedicated eye trackers.
In the future, this could be improved by collecting data across a
wider array of mobile devices, scenes and users. The proliferation
of depth cameras on smartphones and tablets (such as the Google
Pixel 4 [16] and the Apple iPad Pro) could help with training a more
generalizable gaze tracking model.

We also note that while the current contexts are encouraging
and naturalistic, they can still be expanded. We can cover more sit-
uated contexts, for example, users interacting with the smartphone
while driving, biking, or climbing stairs. Furthermore, rather than
an experimenter conducting the study, we can increase the diversity
of our dataset by crowd-sourcing the data collection (as done by
Krafka et al. [25] and Xu et al. [49]). We believe that such a large-
scale dataset consisting of RGBD modality can achieve high accu-
racy without per-user calibration, enabling practical gaze-powered
mobile interactions.

8 CONCLUSION
Our work explores the feasibility of gaze tracking on smartphones
using RGB+Depth (RGBD) data. We collected data from 50 par-
ticipants across four use contexts and then trained a CNN model
based on a spatial weights structure that can efficiently fuse our
multimodal streams. Results demonstrate that our model offers
improved accuracy, down to 1.89 cm euclidean error. While future
work remains, this result suggests that RGB and depth information
offers promise in enabling unconstrained mobile gaze tracking and
could unlock a wealth of new and interesting end-user applications.
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