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Abstract
This paper presents a semantic-based interactive system that enables virtual content placement using natural language. We
propose a novel computational framework composed of three components including 3D reconstruction, 3D segmentation, and
3D annotation. Based on the framework, the system can automatically construct a semantic representation of the environment
from raw point cloud data. Users can then assign virtual content to a specific physical location by referring to its semantic
label. Compared with traditional projection mapping which may involve tedious manual adjustments, the proposed system
can facilitate intuitive and efficient manipulation of virtual content in immersive environments through speech inputs. The
technical evaluation and user study results show that the system can provide users with accurate semantic information for
effective virtual content placement at room scale.

Keywords Digital content placement · Semantic-based interaction · Scene understanding

1 Introduction

Embedding virtual content in physical space can provide
users with instant access to digital information when and
where desired, which has been a vision of research areas such
as ubiquitous computing and augmented reality. However,
the placement of virtual content can be a tedious task in phys-
ical environments. Matching the virtual information with its
correlated physical objects requires careful design and man-
ual corrections, which poses challenges for end users when
the physical environment is uncontrolled or dynamic. For
instance, within built environments like workplaces, it can
be difficult to manually adjust projection mapping in adapta-
tion to changes in real time. To facilitate intuitive interaction
with digital content in immersive environments, this study
proposes a computational framework for a semantic-based
approach to digital content placement. Users can assign dig-
ital content to a location in the physical space through natural
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language. Compared to previous user-centric digital content
placement toolkits [1–4], the integration of semantic-based
input can provide benefits including:

– Interaction efficiency: Speech can potentially outperform
gesture recognition since natural language has a more
standard interpretation than hand gestures [5].

– Intuitiveness: Users can interact with projected digital
content through natural language instead of complex sets
of arbitrary commands.

– Adaptability: Semantic-based interaction systems can
enable domain adaptability through training language
models on domain-specific data.

– Connectedness: Users can leverage the higher level
causality of semantics to compose a set of meaningful
manipulation instead of creating a set of discrete and
sequential commands [6].

The semantic-based input for digital content placement
relies on a shared understanding of the surrounding environ-
ment. For instance, to execute the command “project to-do
list to the table,” a projection mapping system needs to con-
nect the symbol “table” to the actual location of the table
in the physical world. The lack of context awareness may
lead to failures in identifying spatial references from human
utterances.
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This study leverages recent developments in three-
dimensional (3D) reconstruction and scene understanding for
building a semantic-based digital content placement system.
The system automatically constructs a linguistic representa-
tion of physical environments through three components:

– 3D Reconstruction: The component aims to capture the
indoor environment and represent the environment in
point clouds.

– 3D Segmentation: The captured point clouds are classi-
fied into clusters. In each cluster, point clouds share a
co-planar flat surface. The surface can potentially serve
as a projectable area for virtual content placement.

– 3D Annotation: We use a data-driven approach to auto-
matically annotate each surfacewith semantic labels such
as table, wall, floor, etc.; thus, users can refer to the target
location for projection mapping using natural language.

This paper contributes to the topic of virtual content place-
ment for immersive environments by:

– Designing a computational framework for context-aware
projection mapping systems that allow users to interact
with virtual content in physical space through natural lan-
guage: the framework incorporates recent developments
in 3D reconstruction, scene understanding for construct-
ing semantic representations of physical environments,
extended from previous works [7], we integrate a natu-
ral language understanding component for parsing and
grounding user instructions.

– Developing a novel pipeline for point cloud semantic
annotation: the pipeline partitions point clouds and pro-
duces semantic labels for each surface based on a deep
learning architecture and clustering method. The deep
learning architecture groups point clouds with similar
semantics, and the clustering method captures contex-
tual information of point clouds.Based on the assumption
that co-planar point clouds can share the same semantic
label, a majority voting approach was then used to unify
the semantic label of point clouds within a geometrically
homogeneous partition. Experiment results show that the
integration of the geometric features can improve mean
per-class intersection over union and accuracy by reduc-
ing over-segmentation.

– Presenting three room-scale user cases to demonstrate
how the semantic-based interaction can facilitate intuitive
virtual content placement and validating the usability of
the system through both technical evaluation and user
study.

We believe that, by embedding semantic information of
physical environments, the proposed systemcan provide both

content creators and end users with a high-level and intu-
itive tool for arranging virtual content in the real world. The
system can be applicable to awide range of room-scale appli-
cations in projection mapping, augmented reality, and mixed
reality.

2 Related work

2.1 Spatially Augmented Reality

Spatial augmented reality (SAR) uses projection mapping
to augment physical objects with virtual information [8].
The concept was initially demonstrated by Raskar et al.
with applications [9,10]. Previous works have explored SAR
from tabletop [11] to room-scale augmentations [12]. With
the increasing accessibility of commercial depth sensors
such as Kinect, intensive studies have been done to inte-
grate context-awareness into interactive projection mapping.
At room scale, the real-time information captured by depth
sensors enables the rectification of the projector’s output to
accommodate users’ perspective [3] or the physical layout of
a room [4]. At human scale, prior works presented elegant
approaches for gesture-based input on everyday projected
surfaces. For instance, WordKit provides a system for users
to “paint” a user interface where and when it is needed [1].
OmniTouch provides a depth camera and projection system
that enablesmulti-touchfinger interactiononarbitrary, every-
day surfaces [13]. Beyond unimodal interaction techniques,
previous studies such as [14,15] leverage voice and gesture
to create a multimodal interface that uses the strength of both
input modalities, for instance, natural language is suited for
descriptive techniques, while gesture can play a key role in
the direct manipulation of objects [16,17].

2.2 Virtual Content Placement

The placement of virtual content plays a crucial role in aug-
mented reality (AR) and projection mapping. The topic is
closely related to the problem of view management [18].
Factors such as visibility [19] and legibility [20,21] investi-
gated extensively in previous work. Context-aware systems
automatically decide when, where and how much informa-
tion to display based on users’ current cognitive load and
knowledge about their task and environment [22]. Multiple
works utilize features from the real world such as point lights
[23] and visual saliency [24] for adjusting the placement of
virtual content.

Geometry-based systems address automated content place-
ment based on the geometry of physical surfaces [25]. By
detecting planes in the real world, AR systems can adapt
virtual content to the target physical surfaces and integrate
physical constraints into virtual systems. For instance, Snap-
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ToReality extracts 3D geometric constraints from the real
world for snapping virtual content to real 3D edges and
planar surfaces in augmented reality [26]. DepthLab uses
real-time depth data for building a variety of depth-based user
interface (UI) paradigms for augmented reality [27]. Mobile
AR systems such as ARKit and ARCore have encapsulated
plane detection for building geometry-aware augmented real-
ity applications.

However, to the best of our knowledge, semantic infor-
mation of the real world is limited or undetected in prior
works. Semantics, as a high-level abstraction of the phys-
ical environment, can serve as a both machine-readable
and human-readable format for intuitive interaction with
information. Early attempts have been made to map phys-
ical objects to semantic representations for natural human-
machine interaction. For instance, the SHRDLU program
[28] uses rule-based approaches to facilitate virtual con-
tent manipulation through natural language. “Put-that-there”
work of the Architecture Machine Group [29] combines
gesture with speech input for spatially annotating and ref-
erencing digital content in a physical “media room.” In this
work, we incorporate recent developments in scene under-
standing and present a system embedded with semantic
information of the real world. The system allows end users to
interact with projected virtual content in the physical world
intuitively and naturally.

2.3 Scene Understanding

Scene understanding aims to analyze objects in context
with respect to the 3D structure of the scene. Most exist-
ing research on scene understanding is based on 2D images
enabled by the success of deep convolutional neural net-
works [30–32]. Multiple prior works leverage 2D scene
understanding for building context-aware applications in AR
applications [33,34].

With recent advances in volumetric scan fusion tech-
niques, it is possible to reconstruct fine-grained 3D scenes
from scans captured by a commodity depth camera [35]. In
this work, we use a depth camera to capture 3D data of the
environment and build a framework for 3D reconstruction
and semantic segmentation. 3D segmentation is the pro-
cess of decomposing 3Dmodel into functionally meaningful
regions. Several traditional methods, such as edge-based
[36], region-based [37], and model-fitting [38] have been
proposed to group point clouds into homogeneous groups
with similar local features. With the ever-growing amount of
3D shape databases [39,40] and annotated RGB-D datasets
[41,42] becoming available, the data-driven approach starts
to play an important role in 3D object recognition and has
achieved impressive progress [43,44] . While most of the
works focus on individual sampling points, someworks focus
on geometric features such as primitives [45] and planar sur-

face patches [46,47] as more efficient representations for
scene segmentation. Considering the factors that (1) point
clouds sharing the same planar surface patches in indoor
environments likely belong to the same object, (2) planar
surface patches can be used to filter out noises and rectify
over-segment point clouds, and (3) planar surface patches
are ideal locations for projection mapping, in this work, we
used surface patches as a representation for sceneunderstand-
ing and presented a novel approach that combines traditional
geometric segmentation with deep learning models to create
semantic labels for each surface patch in indoor scenes.

3 Method

In this work, we use a commercial RGB-D camera Kinect V2
to acquire the depth and color information of the physical
environment. To display virtual content, we use two syn-
chronized projectors. Projectors and the Kinect V2 sensor
are calibrated using the RoomAlive Toolkit [48].

This work proposed a computational framework for a
semantic-based interactive system that can automatically
transform the low-level point cloud information into high-
level semantic information. The system is composed of three
components including 3D reconstruction (Section 3.A), 3D
segmentation (Section 3.B), and 3D annotation (Section 3.C)
(Fig. 1). Users can then map virtual content onto a physical
surface by referring to its semantic label. For example, a user
can visualize a to-do list on the wall by saying “project to-do
list to the wall.” We build a natural language understand-
ing component (Section 3.D) to parse the user instruction
into intentions and key entities such as digital content and
location. By comparing the semantic similarity between the
extracted entity and the semantic label of the physical envi-
ronment, the system can identify the user-defined referent for
digital content placement.

3.1 3D reconstruction

We obtain a 3D reconstruction of the physical environ-
ment through dense simultaneous localization and mapping
(SLAM). Following the KinectFusion framework [35], we
use a Kinect V2 sensor to reconstruct the scene in four steps:

1. We obtain raw depth information at each image pixel in
the image domain. To reduce noise, we applied a bilateral
filter to the raw depth map.

2. Each frame of depth images is transformed into 3D points
and integrated into a 3D volumetric data structure.

3. Like live camera localization that involves estimating the
current camera pose for each frame, we obtain the Kinect
sensor pose by the full-framemodel iterative closest point
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Fig. 1 The framework of the semantic-based system is composed of
three components: 3D reconstruction, 3D segmentation, and 3D annota-
tion. The 3D reconstruction component translates the acquiredRGBand
depth data from aKinect sensor into point clouds. The 3D segmentation
component segments point clouds into discrete surfaces with seman-

tic label. The 3D annotation component fuses geometric and semantic
labels and creates anchor point for each partitioned surface. To parse
user instructions, we create a parser to extracts intent and entities from
utterances for retrieving and mapping digital contents to a user-defined
physical surface

(ICP) method [49]. We assume that only a small camera
motion occurs from one frame to the next, thus we can use
a fast projective data association algorithm to obtain cor-
respondence points and the point-plane metric for Kinect
sensor pose estimation.

4. The point cloud reconstructed contains noise and outliers
inherent due to the errors of the depth camera, we use
statistical outlier removal algorithms to remove outliers
and prepare an effective 3D model for further processing.

3.2 3D segmentation

The 3D segmentation component partitions the input point
clouds in two steps. The first step, 3D semantic segmenta-
tion, partitions point clouds into groups with homogeneous
semantic characteristics. The second step, 3D geometric seg-
mentation, partitions the input point clouds into groups with
planes based on their geometric properties such as normal.

Toperform the 3Dsemantic segmentation,wehave trained
a deep neural network [43] on the Stanford Large Scale
3D Indoor Scenes dataset [50,51]. The dataset contains
6020 square meters of indoor areas from diversified build-
ing typologies such as offices, conference rooms, and open
spaces. 12 semantic elements cover most commonly seen
objects indoors, such as structural elements (ceiling, floor,
wall, beam, column, window, and door) and furniture (table,
chair, sofa, bookcase, and board).

The deep neural network based on PointNet [43] directly
consumes point clouds and outputs the per point semantic
class labels. To prepare the training data,wefirst split the cap-

tured point cloud into areas of 0.5 m by 0.5 m and randomly
sample 2,048 points from each block. Each selected point is
represented by its Cartesian coordinates, color information,
and its normalized coordinates to the captured scene. The 9-
dimensional vectors aremapped into high-dimensional space
via Multi-Layer-Perceptrons (MLPs). The high-dimensional
local features are then aggregated into the global feature via
Max-pooling. The global feature and the local feature are
then concatenated as the point feature. Finally, the point fea-
ture is mapped to the output class scores via MLPs (Fig. 2 )
.

Geometric features can play an important role in par-
titioning one shape into parts or connecting parts into a
continuous shape. For instance, a new recursive formula
for constructing the generalized blended trigonometric Bern-
stein (GPT Bernstein) can preserve G2 and C3 the continuity
of composite curves [52,53]. A Bezier curve based on
the generalized hybrid trigonometric basis function can be
extended to construct symmetric rotation surfaces efficiently
[54]. Bernstein-Bezier curves can be used as fitting curves
for stroke segmentation and reconstruction [55]. Similarly,
geometric properties of point clouds such as normal and cur-
vature can be used to partition point clouds into regions of
interest [56]. However, the existing learning-based architec-
ture based on a regular voxel grid may fail to capture the
inherent geometric properties of 3D point clouds. As a result,
an entire object can be over-segmented into parts with dif-
ferent semantic labels without considering the local context.
This work extends the learning-based semantic segmentation
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Fig. 2 Simplified architecture of PointNet [43]. (C): Concatenate (M):
Max-pooling (S): Vertical stack The network samples N points within
a region (in this case, we use 0.5 m by 0.5 m) as input, through a series
of multi-layer-perceptrons the input N points are mapped into a 64-
dimensional space, these are called local point features. Max-pooling is
applied to aggregate information fromall the points resulting in common
global features, then the global feature is concatenated with all local
features, aftermulti-layer-perceptrons, these combined features are used
to predict M output class scores

architecture by adding a clustering process based on point
cloud geometric properties.

To capture both the global structure and local contextual
information, we chose the normal and the normal from origin
to represent the geometric properties of 3D point clouds [57,
58]. The normal vector of each point cloud can be estimated
based on its adjacent point clouds. For each point, we pick k
nearest neighbors and compute the corresponding covariance
matrix C , which is defined as:

C =
k∑

i=1

(pi − p)T · (pi − p) (1)

where i = 1....k, p is the centroid of k selected points
(where p = 1

k · ∑k
i=1 pi ). Then we estimate surface normal

byfinding the smallest eigenvalueλ0 of the covariancematrix
C . Assuming λ0 < λ1 < λ2 , we can estimate surface

variation σi by:

σi = λ0

λ0 + λ1 + λ2
(2)

σi is a feature for detecting edge points. When the point
clouds are distributed in a plane, σi is small. If σi of a point
is larger than a threshold στ , the point can be categorized as
a point on edges or borders.

After normal estimation, the point clouds are grouped into
surfels based on the angle between normal vectors. The angle
θ between vectors can be estimated by:

θ = cos−1(u, v) (3)

u and v are the normal of two points. If θ is within the
defined angle threshold, two point clouds are grouped as
parallel surfels. Finally, for each surfel, we use the normal
distances of points from the origin to determine if the sur-
fel shares a plane with other parallel surfels. Similarly, by
setting a threshold we can find clusters of co-planar surfels
from parallel surfels.

In order to obtain a robust and accurate segmentation, we
used the random sample consensus algorithm (RANSAC) to
find inlier surfels and remove outliers. RANSAC algorithm
first estimates a hypothesis plane based on the randomly
selected three points from coplanar surfels. Point clouds are
categorized as inliers if the distance between points and the
hypothesis plane is below a threshold. After iterative process-
ing, we find the plane that categorizes the maximum fraction
of points as inliers. The outlier points are removed. The inlier
points are labeled with the plane normal and each surfel is
assigned a unique geometry label (Fig. 3 ).

3.3 3D annotation

After semantic segmentation and geometric segmentation,
each point is annotated with two labels—its semantic label
and geometry label. However, due to the noise in the 3D
reconstruction, the result of semantic segmentation is a com-

Fig. 3 Steps of 3D geometric segmentation: a Input point clouds (b) Estimate the normal of each point (c) Cluster point clouds by their normal
and normal distance from the origin (d) The result of 3D geometric segmentation
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bination of major correct point clouds and a small fraction
of mislabeled point clouds.

We use a majority voting scheme to unify semantic labels
of point clouds that shares the same plane. First, the result of
3D geometric segmentation is used to enclose a set of point
clouds P as voters. Then we assign a representative semantic
label L P . The representative semantic label assigned for all
of the points in P is determined by choosing the semantic
label with the highest probability. The final semantic label
L P is obtained by

L p = argmax
l∈{1,...,L}

Nl

N
(4)

where l indexes through semantic labels andL is the number
of semantic labels. N is the number of points in P , Nl is the
number of points with the semantic label l .

We then determine the points that are visible from given
locations of projectors based on their field of view using
frustumculling algorithm [59]. By culling points visible from
projector locations, we can determine regions in the scene
that are projectable. For each region, we set an anchor point
for virtual content at the centroid of all points within the
region. An anchor point Pti is annotated with its Cartesian
coordinates (xi , yi , zi ), normal Ni , semantic label lSi and
geometry label lGi , formatted as ((xi , yi , zi ), Ni , lSi , lGi ) .

3.4 Parsing

After the physical environment is scanned and anno-
tated, users can interact with digital content at room scale
through natural language. Semantic-based interaction tech-
niques have been widely used in intelligent environments
such as smart homes, as it provides an intuitive and flexi-
ble medium for users to interact with digital information. In
this study, we chose to use a pipeline-based natural language
understanding component, sincewe need to both interpret the
user’s intent and extract the entities of instructions. The com-
ponent first converts audio input into awritten representation.
Then the user’s unstructured instructions are transformed into
an action languagewhich is structured as “Project A to B.” In
this phrase, “A” represents the digital content to be projected,
and “B” is the semantic label of the location for projection
mapping.

We jointly trained amodel for intent classification and slot
filling based on the joint Bidirectional Encoder Represen-
tations from Transformers (BERT) model [60]. The model
extends the BERT model by defining a joint loss function.
We use the CMU Sphinx API for speech recognition which
converts the user’s voice input into a text representation in
sentences. The input sentence is then tokenized into words
using the Natural Language Toolkit (NLTK) library. A spe-
cial classification word ([CLS]) is added as the first token.

Each token is featurized with dense features based on a pre-
trained BERTmodel [61] for word embedding. At a sentence
level, the joint-Bertmodel uses the first special token denoted
as h0 to obtain the sentence intent classification probability

Pc = so f tmax(W i h0 + bi ) (5)

where W i and bi are model parameters.At a token level, to
classify labels over a sequence of S = (t0, t1, t2, .., tn), the
final hidden states of tokens except for the first special token
are fed into a softmax layer to predict slot filling tags. The
categorical probability for the token xn can be represented
as:

Ps
n = so f tmax(W sh j + bs) (6)

where W s and bs are model parameters, h j is the final hidden
stage of token t j , for j = 1, ..., n.

We use a 3-layer bidirectional transformer [62] to encode
the contextual information for each token through self-
attention [63], and generate contextual embedding. The
objective of learning is to jointly find the (Wi , bi , Ws, bs)

by minimizing the total loss Lt , which is defined as:

Lt = L p + Ls (7)

where L p and Ls are the cross-entropy loss for slot filling and
intent detection, respectively. To improve the entity labeling,
we add a conditional random field (CRF) layer for modeling
slot label dependencies [64], The addition of a CRF layer can
provide constraints to the final predicted labels to ensure that
the label between slots is valid, the constraints are learned
automatically from the training data. (Fig. 4).

The training configuration for building the component is
set as 300 for epochs. The learning rate is set as 10−3. The
batch size is set to 32. The number of layers of the bidirec-
tional Transformer is set to 3. We use Adam optimizer for
the training process.

To build the Natural Language Understanding (NLU)
component, we created a task-specific custom language
dataset by collecting non-expert user data through surveys.
The goal of the survey is to capture potential requests
for digital content placement in indoor settings. 4 types
of pre-designed intents such as “ShowLabel,” “ShowCon-
tent,” “EditContent” and “HideContent” were included.
The intent “ShowLabel” displays a semantic label on each
projectable surface. The intent “ShowContent” and “Hide-
Content” showandhide digital content on a specified surface,
respectively. For each intent, users provided utterance exam-
ples for completing a digital content placement task. For
instance, a user can say “project time to the wall” to dis-
play the current time on the wall surface.
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Fig. 4 The schematic representation of the natural language understanding architecture. The instruction “project time to the table” has the intent
“ShowContent” and entity “DigitalContent” with value “time”and “Location” with value “table.”

Table 1 Intents, entities and examples of the dataset

Intent Utterance Example Entity

ShowLabel Project semantic labels N/A

ShowContent Project time to the wall DigitalContent:time , Location:wall

ShowContent Project to-do list to the table DigitalContent:to-do list , Location:table

EditContent Edit the spatial note on the whiteboard DigitalContent:spatial note , Location:whiteboard

HideContent Clear the spatial note on the wall DigitalContent:spatial note , Location:wall

Both “ShowContent” and “HideContent” intents contain
entities that can be classified into two types“DigitalContent”
and “Location.”The entity “DigitalContent” is specific to
the type of digital content in the digital content repository,
including “time,” “schedule,” “weather,” etc. The entity
“location” represents the semantic label of the physical
surface for projection mapping including “table,” “wall,”
“desk,” etc. We collected 169 unique sentences and 25 enti-
ties. The example of intents and utterances can be seen
in Table 1. In order to evaluate the NLU component, we
performed a ten-fold cross-validation on the dataset. The pre-
cision, recall, and F1 score of intent recognition are 98.2%,
97.1%, 97.6%, respectively. The precision, recall, and F1
score of slot filling 88.0%, 84.0%, 86.0%, respectively.

After extracting entities from utterances, we build two
matches: (1) a match between the digital content tag and
the extracted digital content entity; (2) a match between the
semantic label of physical objects and the extracted location
entity. By constructing the matches, the system can retrieve
the user-specified digital content from the digital content
repository and project the content to the target location. To
find the best match, we first transform words into 300-D
vectors using GloVe [65]. The extracted location entity is
transformed into a vector vloc ∈ R

1×300. For instance, the
semantic label of the physical environment is transformed
into vector vsem,i ∈ R

1×300, i ∈ (1, N ), where N denotes
the number of the physical surfaces annotated with semantic
labels. The semantic similarity is calculated by

Sim(vloc, vsem,i ) = vloc · vsem,i

||vloc||||vsem,i || (8)

where ||vloc|| is the Euclidean norm of vector vloc and
||vsem,i || is the Euclidean norm of vector vsem,i .

We set the target location for digital content placement
by selecting the physical object with the largest semantic
similarity value of the semantic-location pair. Similarly, the
user-specified digital content such as “time” can be retrieved
based on the similarity score between the extracted digi-
tal content entity and the tag of the digital content in the
repository. The repository stores digital content such as tem-
perature, weather, to-do list, time, etc. Each content contains
a tag, anchor point, dimension, and graphics. Contents can
be retrieved by its tag. The anchor point and dimension are
used for calculating the transformation matrix between the
model space and the physical space for projection mapping.

4 Result

4.1 User interface

We develop a proof-of-concept prototype for end users to
set up a semantic-based virtual content placement system.
The prototype allows end users to (1) stream the 3D scan
of the environment for digital content placement (2) parti-
tion the captured scene into groups and annotate each group
with a semantic label (3) intuitivelymodify the automatically
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Fig. 5 Semantics Mapping UI (a) the visualization of 3D segmenta-
tion (1) the visual representation of the physical world and its semantic
segmentation result (2) the control panel for scanning, segmenting, and
annotating surfaces (3) the information panel for each segmented sur-

face, the panel shows the default position for digital content placement
of the surface | (b) The system highlights the anchor point of the wall
surface for digital content placement, user can edit the position through
manual input

created semantic labels with real-time visual feedback. The
functions are supported by three key components:

– 3D Scanning: the 3D scanning component connects
Kinect sensors through the Kinect Software Develop-
ment Kit (SDK). In this study, we use Kinect V2 for
3D reconstruction, each Kinect sensor is connected to
an Intel NUC computer. The depth and infrared data
are then streamed to a server computer through an Eth-
ernet connection. Then the component reconstructs the
environment by fusing depth images based on an imple-
mentation of KinectFusion in C++ with the point cloud
library (PCL). The corresponding RGB color images are
used to reconstruct the surface texture. The 3D scanning
component represents the reconstructed scene in a down-
sampled point cloud format and outliers are removed
by statistical outlier removal algorithms. The component
saves the point cloudfile as a PointCloudData (PCD) for-
mat loaded by the user interface and visualized through
the Open3D library for Python [66].

– 3D Segmentation: After loading the point cloud of the
environment, users can partition the point cloud into clus-
ters annotated with semantic labels. The trained point
cloud segmentation model is loaded through PyTorch.
After semantic segmentation, the geometric segmen-
tation and 3D annotation process are implemented in
Python based on the Open3D library. Each point is
labeled with a unique semantic label. Users can explore
the segmentation result intuitively in the visualization
panel after setting the visibility of the result as true
through a click-box. Each semantic cluster is colorized to
improve visual readability (Fig. 5). The scene we tested

is of 35m2 and 196809 points. The computation time for
the pipeline is measured on a 4 HZ CPU and RTX 2080
Ti GPU. The bulk of the time was spent on semantic seg-
mentation which takes 2.7s and geometric segmentation
takes 0.6s and the 3D annotation process takes 0.1s.

– Editing: The reconstructed environment is organized into
clusters of point clouds sharing the same semantic label.
Users can select a group of point clouds by their semantic
label through a drop-downmenu. The target of projection
mapping for each cluster is initially set to the geometric
center of all points in the cluster and the normal or the
target is set to the weighted average of the normal of
all points in the cluster. Users can visualize the projec-
tion mapping target for each cluster in the visualization
panel, both the target location and normal can be modi-
fied through manual input (Fig. 5).

In addition, the prototype provides support for human
motion tracking and projector-camera calibration. Users can
use proxemic information including the position and orien-
tation of people to invoke the projection mapping system.
For example, users can define a threshold for the distance
between a surface and the position of the detected people,
while the distance is within the threshold, the digital content
assigned to the surface will be projected onto the surface.
The display panel is used for projector and camera pairing.
Users can either manually input the position and orienta-
tion of the camera and projector or use auto-calibration. In
the auto-calibrationmode, the projector casts structured light
patterns onto the scene. Two Kinect Sensors use structured
light sequence to find correspondence and determine the
projector-camera pair as a stereo camera setup [67]. Then
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Fig. 6 The semantic-based placement system interprets the user’s voice
command and projects the specified virtual content onto the surface
with the targeted semantic label (a) the pipeline for the semantic-based
placement system (ASR - Automatic Speech Recognition, NLU - Natu-

ral Language Understanding) (b) the user uses speech input to place the
digital content “to-do list” at the surface with semantic label “table”
(c) the user uses speech input to places the digital content “time” on the
surface with the semantic label “wall”

we use the Iterative Closest Point (ICP) algorithm [68] to
find the geometric transformation between the Kinect sen-
sors and the scanned scene. Finally, the sensor, the projector,
and the scanned scene are registered in a shared coordinate
system.

4.2 Example applications

To illustrate the capability of the semantic-based content
placement system, three applications, including (1) personal
assistant (2) sensor reading visualization, and (3) spatial
notes, are presented. This section will also describe how
semantic-based interaction can provide users with intuitive
and efficient access to virtual content in physical environ-
ments.

4.2.1 Personal assistant

In this scenario, the system provides users with instant access
to a wealth of information such as time, schedule, and to-do
list by projecting the virtual content to a physical surface
specified by the user through natural language. For instance,
the user says utterances such as “project current time to the
wal.” The Automatic Speech Recognition (ASR) and Nat-
ural Language Understanding (NLU) pipeline interprets the
user intent as “ShowContent” and extracts entities includ-
ing“time” and “wall.” The entity “time” is classified as
“DigitalContent”, the entity “wall” is classified as “Loca-
tion.” Based on the cosine similarity, the system extracts
the digital content of the highest matching score from the

repository. The system can identify the target from all anno-
tated surfaces by comparing the cosine similarity between the
entity name “wall” and the semantic labels of the annotated
physical surfaces. Finally, the system calculates the trans-
formation matrix between the model space and the world
space. The projector then projects the digital content “time”
onto the physical surface with a semantic label of “wall”
(Fig. 6). The system provides users with a natural interface
for visualizing digital information at a specified location.
The intuitive control of peripheral information display can
enhance a user’s ability to manage multiple digital informa-
tion simultaneously.

4.2.2 Sensor reading visualization

It can be difficult for users to read the status of a sensor locally
if the sensor is not equippedwith a display. The simple imple-
mentation of the semantic-based content placement system
allows users to visualize sensor information at a nearby loca-
tion. The visualization of sensor readings can be used to
support context-aware service. For instance, the reading of
a plant sensor projected onto a nearby physical surface can
inform the user whether the soil needs watering or not. A user
can use the utterance “project moisture reading to the wall”
while watering the plant in this scenario. The entity “mois-
ture reading” is classified as “DigitalContent.” The entity
“wall” is classified as “Location.” We use semantic-based
data management and processing middleware for modeling
and describing connected devices and sensors. Based on the
query language SPARQL, the reading of the moisture sen-
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Fig. 7 a A user places the moisture sensor reading on the wall near the
plant (b) A user leaves a spatial note on the whiteboard to remind other
users not to wipe the written content

sor can be retrieved from a relational database and projected
to the physical surface annotated as “wall.” The display of
moisture sensor reading at a nearby wall surface supports the
user’s in-situ decisionmaking on tasks such as plant watering
(Fig. 7).

4.2.3 Spatial notes

Users can use the semantic-based tool to annotate physical
objects with additional virtual information using natural lan-
guage. The customized labels attached to physical objects can
serve as a communication medium for co-located users. For
instance, a user can leave spatial notes such as “please do not
wipe” on the whiteboard to remind other users who share the
room. The user can give voice commands like “project a spa-
tial note to the whiteboard” to post such notes. The “spatial
note” is recognized as a “DigitalContent” entity associated
with a “Location” entity - “whiteboard.” Then the user can
edit the content of the spatial note on the door by saying
the utterances “edit the spatial note on the whiteboard.” The
spatial note associatedwith thewhiteboard becomes editable,
and the user can input the note content “please do not swipe”
through natural language. Finally, the spatial note is pre-
sented in text and projected onto the whiteboard (Fig. 7 ).
The system provides users with an efficient tool for anno-
tating information on physical objects. The projected public
viewable information can serve as a virtual post-it adhered
to physical environments to support collaboration between
users in workplace environments.

5 Evaluation

To evaluate the usability of the system, we conducted both
a technical evaluation and a user study. The accuracy study
measures the accuracy of the 3D segmentation in both quan-
titative and qualitative manners. The user study evaluates the

Table 2 Model evaluation on self-scanned point cloud

Scene Method Mean IoU Accuracy

Scene 1 PointNet 66.3% 96.3%

Ours 71.1% 94.4%

Scene 2 PointNet 71.3% 93.7%

Ours 86.4% 96.5%

Scene 3 PointNet 46.2% 77.8%

Ours 65.7% 78.3%

effectiveness of semantic-based interaction for virtual con-
tent placement.

5.1 Model performance

To evaluate the performance of our system, we compare
the accuracy of the PointNet approach and our proposed
approach using two criteria including mean intersection over
union (IoU) and accuracy. The result can be seen in Table 2 .
The mean accuracy over all classes was calculated using the
following formula:

Accuracy = T P + T N

T P + T N + F P + F N
(9)

where T P , T N , F P , and F N are the true-positive case,
true-negative case, false-positive case, and false-negative
case, respectively. Mean IoU over all classes was calculated
using the following formula:

MeanI oU =
∑k

i=1
T Pi

F Pi +F Ni +T Pi

k
(10)

where T Pi is the true positive and F Pi is the false positive
and F Ni is the false negative for class i . k is the number of
class.

We then evaluate our trained model on point clouds
obtained from workplaces and homes using a Kinect Sen-
sor. The ground truth for each scene is manually labeled. We
compare the PointNet approach with our approach which
uses the majority voting to unify the semantic label of points
sharing a plane.

The results show that parts of the sofa point clouds are
misclassified into the chair group, and parts of the wall are
misclassified into the window group in Scene III. The rea-
son may be attributed to (1) environmental factors and (2)
semantic factors.

– Environmental factors: In the segmentation process,
color features are encoded as the attribute of a point;
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thus, the semantic segmentation is sensitive to the envi-
ronmental factors that may affect the object’s color, such
as lighting and shading. For instance, the uneven lighting
on the wall causes local highlights and color changes.
The local color changes can result in over-segmentation.

– Semantic factors: A single object or objects of the same
semantic class can be made of different materials which
can result in misclassifications. For instance, in Scene
III, most of the point clouds on the whiteboard frame are
misclassified as windows. Unlike the board surface made
of matte white plastics, the frame of the whiteboard is
made of reflective metal. The reflectance of metal frames
can cause color variation and noises in 3D reconstruc-
tion. Since the color features and point cloud normal
are encoded as features of points in the semantic seg-
mentation, the captured whiteboard frame point clouds
with distinguished color and normal are over-segmented.
Due to the similarity between the whiteboard frame and
window frames, in this case, the whiteboard frame point
clouds aremisclassified into window class. The error was
not rectified by the geometric segmentation and majority
voting. The reason can be that the normal of the frame
point clouds are different from the surface area due to the
noise caused by reflections in 3D reconstruction.

As depicted in Fig. 8, most of the point clouds that
were misclassified by the PointNet approach are corrected
by the post-processing process which unifies the label of
point clouds on the same plane. The result shows our sys-
tem can produce a more uniform and accurate result on our
own environment point cloud. However, the point clouds
we captured in this study are majorly composed of objects
with simple geometry. We unified the semantic label of point
clouds belonging to the same plane based on the assumption
that co-planar point clouds share the same semantic class.
Since our goal is to identify semantic labels of projectable
surfaces, instead of recognizing semantic labels of every
item, the plane constraints added for segmentation can well
serve for projection mapping applications. This approach
might not work for scenes that contain geometrically com-
plex objects or various semantically different objects sharing
similar geometry.

5.2 User study

In order to evaluate the effectiveness of the semantic-based
input, we invited nine undergraduate and graduate students to
perform the digital content placement task with and without
the system. Each participant was asked to relocate a pro-
jected virtual content to a specified location. The task was
completed in two set-ups. In the first set-up, we used a tradi-
tional projection mapping system. The participants move the

Fig. 8 Qualitative model evaluation of the PointNet segmentation
approach and our proposed approach on the point cloud of scanned
scenes

digital content through a graphical user interface (GUI) with
four buttons for moving up, moving down, moving right, and
moving left. In the second set-up, the participant tested the
semantic-based input. To move digital content, the partici-
pant can define the target location by referring to the surface
semantic label through natural language. The system then
parses instructions and automatically projects the content to
the target surface. The task is considered complete if the
observer confirms the virtual content is placed at the specified
location.Weconducted ten iterations of tests and recorded the
completion time for each iteration. Each iteration consists of
three tasks; according to observation, the tasks performed by
the participants included remapping the virtual content from
the chair to the wall, remapping the virtual content from the
wall to the table, and remapping the virtual content from the
table to the chair. We found that semantic-based mapping
system (mean = 5.88, Std = 1.05) was significantly faster
(p<.001) overall compared to the traditional projection map-
ping system (mean = 12.89, Std = 4.21).

We found significant differences in the task completion
time between the traditional projection mapping and the
semantic mapping for virtual content placement. The seman-
tic mapping system allows users to remap the virtual content
by referring to the target surface’s semantic label directly.
The distance between the current and the target surface does
not affect the completion time. The completion time depends
on (1) the processing time for instruction recognition and (2)
the error rate of the Automatic Speech Recognition (ASR)
and Natural Language Understanding (NLU) component.
For a traditional projectionmapping system, the users need to
move the content incrementally using a keyboard. The relo-
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Fig. 9 Results of the Likert-scale survey questions

cation of virtual content can be sensitive to the distance of
movement.

After the test, the participants were asked to take a sur-
vey to evaluate the semantic mapping system. In the survey,
the participants were asked four Likert-scale questions: (1)
The system can improve task performance (2) The system is
useful in my daily life (3) The system is intuitive and easy
to use (4) The system meets your expectation. Each question
can be rated from 1 (strongly disagree) to 7 (strongly agree)
with a step size of 1.

As depicted in Fig. 9 , all four questions got positive results
from our participants. More specifically, all participants
agreed that our system can improve their task performance
(mean 5.67, Std 1.32). More than half of the participants
believe our system is useful in their daily lives (mean 5.33,
Std 1.0). 7 out of 9 participants agreed that our system is
intuitive and easy to use (mean 5.56, Std 0.88). And all par-
ticipants agreed that the performance of our systemmet their
expectations (mean 5.67, Std 0.50). Compared to a speech
input projection system without semantic information, our
system is significantly better from all four perspectives (p <
0.001 for all four questions).

6 Conclusion and future work

This studypresents a computational framework for a semantic-
based interactive system for digital content placement in
immersive environments. Enabled by the system, users can
directly place virtual content onto a physical surface by refer-
ring to its semantic label. Compared to other interactive
modalities, the integration of semantic-based input can pro-
vide benefits such as efficiency, intuitiveness, adaptability,
and connectedness. To construct a semantic representation
of the physical environment, this work proposes a novel
pipeline for automatically annotating the physical environ-
ment with semantic labels. The pipeline incorporates the
geometric properties of point clouds into a learning-based
architecture for embedding both the global and local contex-
tual information. Based on the technical evaluation result, the

pipeline improves the mean IoU and accuracy in point cloud
segmentation.

To test the usability, we evaluated the system’s accu-
racy and conducted a user study. We compared the pro-
posed semantic-based projection mapping system with the
graphics-based projection mapping system in the user study.
In the semantic-based scenario, a user assigns digital content
to a location via a speech interface. For instance, a user can
place a digital clock on a table by saying “project time to
the table.” In the graphics-based scenario, a user moves pro-
jected digital content to the target location via aGUIwith four
buttons for move-up, move-down, move-right, and move-
left. According to the test results, the semantic-based system
can provide users with efficient approaches to interact with
virtual content in the real world. We believe that our pro-
posed system can be applied to a wide range of applications
in immersive environments, augmented reality, and mixed
reality.

In future work, we would like to leverage semantic repre-
sentations of physical environments to construct a high-level
scene understanding. For instance, by constructing a seman-
tic graph to encode semantic relationships between physical
objects and users, the system may be able to process com-
plex unstructured queries and identify an optimal location
for digital content placement.
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