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ABSTRACT 
Classroom sensing is an important and active area of research with 
great potential to improve instruction. Complementing professional 
observers – the current best practice – automated pedagogical pro-
fessional development systems can attend every class and capture 
fne-grained details of all occupants. One particularly valuable facet 
to capture is class gaze behavior. For students, certain gaze patterns 
have been shown to correlate with interest in the material, while 
for instructors, student-centered gaze patterns have been shown to 
increase approachability and immediacy. Unfortunately, prior class-
room gaze-sensing systems have limited accuracy and often require 
specialized external or worn sensors. In this work, we developed 
a new computer-vision-driven system that powers a 3D “digital 
twin” of the classroom and enables whole-class, 6DOF head gaze 
vector estimation without instrumenting any of the occupants. We 
describe our open source implementation, and results from both 
controlled studies and real-world classroom deployments. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and tools; 
Ubiquitous and mobile computing. 
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1 INTRODUCTION 
Over the past decades, learning science research has identifed many 
features of successful teacher-student interactions that lead to ben-
efcial outcomes for students such as greater learning, higher self-
efcacy, and increased student voice in the classroom. Yet changing 
one’s classroom practice, even with awareness of this research, is 
not straightforward. For instance, in universities where we situ-
ate our work, professors are hired and promoted for their domain 
expertise, and they typically view themselves as domain experts 
and not teaching experts [9]. University faculty typically receive 
no training in instruction; instead, they learn how to teach on the 
job, often without much support [28]. 

One solution to support such instructors’ growth is personal-
ized and regular professional development. Today, this is partially 
achieved with professional observers, who attend one (or perhaps 
a few) lectures to observe and subsequently provide formative feed-
back to instructors. This approach is impossible to scale to every 
class and every instructor, and yet grounded, regular feedback on 
ones’ current practice is an essential component of learning [14]. 
Teachers need to routinely refect on how their practices (mis)align 
with efective pedagogy in order to change [30]. In short, the in-
structional feedback loop currently occurs at such large intervals 
as to have a negligible impact on the quality of higher education. 

In response, researchers are investigating AI-augmented peda-
gogical professional development [3, 21]. Used together with profes-
sionals, such systems could support every instructor, attend every 
class, help instructors observe and refect on trends across semesters, 
and capture fne-grained details for all occupants that would be 
impossible even with a team of in-situ human observers. There are 
several innovations and components required to achieve this vision, 
from low-level sensing and secure data storage, all the way to end-
user interfaces providing instructors with actionable feedback, e.g., 
refection opportunities following class [17, 20, 42, 44]. In this paper, 
we put forward the idea of a classroom “digital twin” – a concept 
borrowed from the Internet of Things (IoT) research (sometimes 
called mirror models or mirror worlds) [19, 25, 32] - which we be-
lieve can serve as an important contextual container for classroom 
sensor data, on top of which future end-user applications can be 
built. 
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Figure 1: Left: Our web-based capture interface that detects ArUco markers and builds an inventory of important items (walls, 
whiteboards, etc.). Right: Example digital twin output, also a web-based application. Once a classroom is created, processed 
gaze data can be loaded into the scene and replayed. 

learning and reasoning [35]. This representation can include every-
thing from the precise dimensions of the space, the temperature of a 
room, the speed of the elevators in a building - essentially anything 
that can be measured about a physical location and digitized. The 
concept is akin to a simulation, but employs authentic sensed data 
from actual physical environments. Importantly, it allows this mea-
sured data to be better contextualized in a rich, three-dimensional 
scene that can be viewed and manipulated in space and time. 

A classroom is a great exemplar of such a complex physical envi-
ronment, which contains objects of various functions (whiteboards, 
projection screens, podiums, seats, tables) and occupants in at least 
two diferent roles. There are strong contextual and spatial relation-
ships between these physical elements that can be (re)played out 
and analyzed in a digital twin that rows in a database or lines on a 
chart cannot so easily provide. 

In this work, we digitize classrooms and the people and objects 
within them (Figure 1). Then, as a specifc proof-of-concept data 
source for investigation, we digitize classroom gaze within this 
room: a feature made richer by being contextualized in a dynamic 
3D scene. Gaze from a particular actor in the scene emanates from 
a source location and lands on a target. It changes rapidly over 
time and moves dynamically in space. Apart from providing a rich 
data source for modeling, gaze also provides psychological signals 
of great importance for both studying and improving classroom 
teaching. 

We are not the frst to consider classroom gaze and its utility as a 
part of professional development for improving instructor-student 
interactions has been well motivated in prior work (discussed in 
the next section). However, we are the frst to embody it in a 3D 
classroom digital twin, and furthermore, our six-degree-of-freedom 
(6-DOF) gaze tracking pipeline outperforms prior systems that track 
classroom gaze, cutting angular error by roughly half. Together, 
these dual advances form the technical contribution of our paper, to 
which we add two evaluations: a controlled study and results from 
a large-scale deployment in real-world classrooms. We conclude 
with avenues for future work, as this is very much an early step 
in a much larger trajectory of supporting instructor professional 
development via classroom sensing systems. 

2 RELATED WORK 
We frst provide some additional background on digital twins. We 
then summarize key work that underscores the pedagogical value 
of gaze sensing in classrooms and review other systems that have 
captured classroom gaze patterns through a variety of alternative 
sensing means. 

2.1 Digital Twins 
Digital twins are generally considered to have emerged in the early 
2000s, in parallel with complementary advances in wireless con-
nectivity and the Internet of Things (IoT) [36, 39]. However, the 
concept has much earlier roots, going back at least to the 1960s, 
with NASA “twinning” physical systems at ground level to match 
those in space. This proved invaluable during the Apollo 13 crisis 
where ground-level twins were used to simulate various on-board 
events and conditions. Using this, engineers were able to identify 
problems, replay events, and gain comprehension of complex in-
terdependencies, all of which informed real-world decisions with 
signifcant consequences. 

Since then, digital twins have been proposed for use in many 
other complex environments, including factory foors [46], military 
vehicles [26] and wildlife sanctuaries [33]. As sensor networks and 
ambitions have grown, there are now eforts to twin whole buildings 
(e.g. as an approach to increase sustainability), and even countries 
to serve a variety of purposes [1]. Information that is proposed to 
be twinned includes spatial layouts of objects in the environment, 
electrical and other infrastructural maps, sound levels, and features 
of occupants in spaces. To the best of our knowledge, this concept 
has not yet been applied to classroom environments. However, 
other sensing systems, such as using video cameras to capture a 
2D classroom scene, have long been a part of teacher professional 
development approaches such as video-stimulated recall [24]. 

2.2 Pedagogical Value of Sensing Gaze 
As noted above, we test our concept using the particular classroom 
feature of gaze. For decades, education researchers have understood 
and investigated the importance of gaze and eye contact in teaching 
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(also called the visual focus of attention (VFoA) in the literature [49]). 
For example, direct eye contact can increase closeness and rapport 
between teachers and students, reducing the psychological distance 
that the authority structures of the classroom can impose [4, 6]. 
Teachers who look at their students are perceived as more interested 
and more approachable [34]. The absence of gaze is just as telling, 
making the warmest teachers seem cold and distant [5]. A teacher 
who rarely looks at a student when talking creates the perception 
that she or he is not very interested in that student [13]. Breed et al. 
[13] also found that the absence of eye contact between teachers 
and university students produces negative feelings about the class. 
Thus, the gaze is an important component in the development of 
immediacy, a construct that captures this positive sense of warmth 
and belonging between interlocutors [7]. In addition to immediacy, 
eye contact permits teachers to monitor and regulate their classes 
while student gaze can provide a strong signal of attentiveness on 
their part to the learning material [5]. 

Beyond self-reported perceptions, teacher gaze also has a direct 
impact on subsequent student behavior. High levels of gaze cause 
students to be more attentive to the teacher [13]. Students in high 
eye contact availability conditions are more likely to participate 
in class than those in low eye contact availability conditions. In a 
series of controlled studies, gaze has also been found to increase 
recall; students were better able to answer questions from verbal 
presentations of information when the speaker looked at them [43]. 

Importantly, teachers’ abilities in employing efective classroom 
behaviors such as gaze are not fxed, but can be changed through 
intervention. For instance, receiving visual warnings alerting them 
to students not receiving enough eye gaze enabled teachers to 
spread their attention more equally among students than teachers 
without augmented perception [10]. 

Taken together, this extensive literature motivates the impor-
tance of gaze in the classroom, from both a research standpoint 
as well as motivating the need for professional development ap-
proaches to improve instructors’ pedagogical skills. This provides 
a basis for its use as an initial feature of our digital classroom twin. 
Further applications are discussed in the Future Work section. 

2.3 Prior Classroom Gaze Systems 
There has been a plethora of research in the graphics and computer 
vision community on gaze estimation. Two main approaches have 
been explored. The frst is to instrument the wearer with a mobile 
eye tracking headset [16, 42, 45]. These devices are very accurate, 
but are more invasive (socially, ergonomically and aesthetically) 
and require many expensive headsets to track all participants. The 
second approach is to instrument the environment with sensors 
such as depth cameras [11] and RGB cameras [3, 47]. These ap-
proaches are signifcantly less accurate compared to their wearable 
counterparts (1 vs. 25 degrees of gaze angular error) but ofer a 
cheap and scalable 6-DOF gaze tracking (3 degrees of freedom of 
head rotation - yaw, pitch and roll - and 3 degrees of translation 
with respect to the classroom - X, Y and Z). See [15, 27] for an 
in-depth survey of gaze estimation systems. 

Prior classroom sensing systems have also recognized the utility 
of gaze in tracking instructor-student interactions [37, 48], behav-
ior analysis [13] and attention tracking [11] to name a few. As 

they make use of approaches from the gaze literature itself, they 
can broadly be categorized based on the sensors’ placement, type, 
and fdelity. We compare this prior work in Table 1. Very related 
to our approach is Bidwell et al. [11], which makes use of 9 cam-
eras placed across the classroom to capture students’ gaze and 
model their attention. However, this system does not track the in-
structor and the hardware setup is comparatively heavyweight. In 
contrast, EduSense [3] provides a comparatively lightweight setup 
(2 of-the-shelf cameras), but does not capture the 3D classroom 
and only captures the 3-DOF gaze (head rotation) of the students 
and instructor. Our approach combines the best of both worlds, 
providing 6-DOF gaze capture of students and instructors, while 
also capturing the 3D scene, all the while making use of only two 
cameras. 

3 IMPLEMENTATION 
Our system is built upon key developments in computer vision 
and image processing that we utilize to provide a holistic sensing 
system. We now describe the main components of our approach. 

3.1 Hardware 
In order to run our system, classrooms must be outftted with two 
cameras: one at the front of the room looking towards the students 
and another looking at the instructor. While more cameras can 
increase the feld of view and sensing fdelity, we settled on two 
cameras, fnding this to be a good balance between deployment 
practicality (hardware cost, available Ethernet ports, time to deploy, 
etc.) and classroom coverage. We make use of of-the-shelf Lorex 
LNE8950AB cameras that have a 112° feld of view and cost ∼$150 
in single-unit retail prices. These use Power over Ethernet (POE) 
for power and connectivity, making installation simple and clean. 
These cameras are confgured in software to transmit data 4K video 
at 5 FPS. Our processing backend is an Intel Core i9-7920X CPU 
running at 2.90GHz with a GeForce GTX 1080 Ti GPU. 

3.2 Digital Twin Capture 
First, we have to establish our camera’s intrinsic parameters (e.g., 
focal length, distortion coefcients) using a checkboard pattern 
[29]. For this, we use OpenCV’s camera calibration routines [12]. 
Once calibrated, the intrinsics can be used for all cameras of the 
same model. These parameters are later used to correct distortions 
like fsh-eye and to estimate 3D distances in real-world units. 

Our next step is to detect the location of various objects related 
to pedagogy in the classroom, which include items such as white-
boards used by the instructor, overhead projection screens, and the 
podium. The physical size of the classroom is also important, and 
so we also need to get the reference of the walls and foor of the 
classroom. To detect these, users place two ArUco [23] markers for 
each item on diagonal corners to establish their 6-DOF plane (3D 
position and rotation). We provide a library of pre-defned ArUco 
markers for diferent objects, allowing our pipeline to not only 
localize walls/objects in space, but also know the category. This 
one-time process takes only a few minutes per classroom. Note that 
items that have an irregular shape (such as a podium) are approxi-
mated as a rectangular plane (and captured using a single ArUco 
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Table 1: Comparison of our system vs. prior work on classroom gaze sensing. 

Sensor 
Type 

3D Classroom 
Capture 

6-DOF 
Gaze 

Instructor 
Gaze 

Student 
Gaze 

Deployed 
at scale 

Mean Gaze 
Error 

Thomas et al.[47] RGB Camera # ! # ! # not reported 
Cutumisu et al.[16] Student-Worn Eye Tracker # # # ! # 0.5° 
Sumer et al. [45] Instructor-Worn Eye Tracker # # ! # # not reported 
Raca et al. [42] Student-Worn Eye Tracker # # # ! # not reported 
Bidwell et al. [11] 5 RGB + 4 Depth Cameras ! ! # ! # not reported 
Aung et al. [8] Dataset of Youtube Videos # # ! ! # 38.3° 
Ahuja et al. [3] 2 RGB cameras # # ! ! ! 34.6° 
Our approach 2 RGB cameras ! ! ! ! ! 21.3° 

marker). We use OpenCV’s [12] ArUco marker detection API to 
provide us with each marker’s 3D pose. 

We use the marker placed in the center of the classroom foor as 
a common origin. Both cameras use this marker to set their own 6-
DOF position. Then, in turn, all other markers seen by the cameras 
can be appropriately located and oriented in space, creating a 3D 
classroom with walls and objects. 

3.3 6-DOF Head Pose Estimation 
To infer the direction of gaze, we need to estimate the head pose of 
each student and the instructor in the class using the two camera 
views. We start by frst detecting all of the faces in the scene using 
RetinaFace [18], which outputs face bounding boxes. We then run 
3DDFA [50] to extract facial landmarks (68 points) that correspond 
to features like eyes, nose, mouth, jawline, etc. The output of 3DDFA 
is 2D coordinates in the image space of the classroom and 3D 
coordinates of landmarks in the object space. 

To convert the landmarks from the object coordinate space to 
the classroom world space, we need to solve for this translation 
and rotation with respect to our classroom origin. We make use 
of SolvePnP [22] to fnd the world position of the 3D face points 
by solving for its correspondences to the 2D points. At the end of 
this step, we have the 6-DOF head pose - encoding the 3D rotation 
(yaw, pitch, and roll) and 3D position - of all the people in the scene. 
This gives us a head gaze vector with an origin at the center of each 
head. Figure 4 ofers an example scene with head gaze plotted as a 
3D frustum. 

The next step is to distinguish between the instructor and the 
students in the scene. We make the assumption that the instructor 
is the person that is closest to the podium, whiteboard(s), and/or 
projection screen(s). In the future, more advanced techniques might 
be employed, including who is standing vs. sitting, who is talking, 
and facial recognition. Once we identify the instructor, we then 
track them across frames using a standard centroid-based Euclidean-
distance tracker [38]. 

It is important to reiterate that we estimate the head pose rather 
than the eye gaze of students and instructors in the classroom. This 
is because even with 4K cameras, there is insufcient resolution 
to estimate true eye-gaze even with state-of-the-art techniques at 
several meters range. Fortunately, prior research [3, 40, 41] has 
shown that head orientation is a good proxy for gaze attention in 
classrooms. 

3.4 Foci Estimation & Heatmaps 
To provide semantically useful information about where the stu-
dents and the instructions are actually looking, in the fnal step we 
combine the 3D gaze with the locations of the walls, foor, and the 
diferent objects (projector screen, whiteboard) in the unifed 3D 
classroom. For the students, we fnd their point of gaze by fnding 
the point of intersection between the gaze direction vector and the 
3D planes (such as whiteboard, podiums, etc.) in the digital twin. 
Upon aggregating these points of gaze over time, we can create a 
semantically meaningful gaze dwell map for diferent objects. Lack 
of dwell on items is also a useful metric. By tracking dwell over 
time, we can compute percentages of attention (Figure 2, left) and 
even derive detailed heatmaps (Figure 2, center). 

For instructors, there often does not exist a single plane of focus. 
Instructors move around and look at diferent areas of the class-
room and at diferent students. We thus fnd the intersection of 
the instructor’s gaze with diferent student planes (based on the 
students’ 3D facial bounding boxes). Note that since the instructor 
gaze can intersect with multiple planes (e.g. students sitting behind 
one another) it is challenging to positively identify the instructor’s 
true gaze target. Instead, we record all possible intersections along 
the gaze ray as possible targets and them project this information 
down onto a 2D heatmap (accumulated over time), which we render 
on the foor of the classroom (Figure 2 right). In the future, we could 
rely on cues such as hand gaze or triangulation of active speakers 
using microphone arrays to held resolve this 3D ambiguity. 

3.5 User Interface 
We created two proof-of-concept user interfaces to synthesize and 
explore classroom digital twins, and render gaze data that we pro-
cessed (see Figure 1). This was a web app created in javascript using 
the three.js [2] library for 3D rendering. In addition to connecting 
via a desktop or mobile web browser, we also allow users to enter 
classroom digital twins via a VR headset. This allows for highly 
embodied exploration of the 3D space and experience diferent per-
spectives (see Video Figure and Figures 2 and 3). We believe this 
new modality could drive new and interesting opportunities for 
refecting on pedagogical practice — an area we hope to explore 
in future work. We note that the current instantiation of these in-
terfaces is not yet intended for direct use by instructors (i.e., the 
pedagogical value is currently low), and is chiefy meant for illustra-
tive purposes and to aid us with debugging. Our current research is 

https://three.js
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Figure 2: Left: Percentage of student gaze across various classroom foci (whiteboards, projector screens, lectern) at the end of a 
class session. Center: Heatmaps of students gaze across the same foci. Right: Heatmap of the instructor gaze aggregated across 
a class session. 

meant as a vehicle and important technical stepping stone to future 
applications, which we discuss in Future Work. 

3.6 Privacy Preservation 
Even though our study was reviewed and approved by our uni-
versity’s IRB, any system that captures images and video from 
classrooms naturally evokes potential privacy concerns. Images 
and videos of students in classrooms, if stored, can lead to con-
cerns for both students and instructors about being tracked. Left 
unaddressed, these concerns could lead to such systems not being 
widely adopted by universities. We took these privacy challenges 
head-on. In particular, similar to the EduSense system [3], we ad-
dress these privacy challenges by only storing processed data (e.g. 
facial landmarks/keypoints, facial bounding boxes, location of walls, 
foors, and objects) and discarding the raw video frames immedi-
ately after being processed by our pipeline (in our Video Figure, 
we include reference footage for illustration). We believe most of 
the concerns around privacy in classrooms pertain to raw data 
(audio, images, video) and much less so around processed facial 
keypoints (which are not tied to any person). Notably, once we pro-
cess the summarized views, such as the heatmaps of the students 
and instructor gaze, we can even discard facial keypoints to further 
alleviate privacy concerns. 

Figure 3: In additional to conventional web browsers, users 
can enter classroom digital twins via a VR headset, and then 
move around to replay data from diferent perspectives, of-
fering an interesting new modality for refecting on peda-
gogical practice. 

4 OPEN SOURCE MODEL AND DATA 
To enable other researchers and practitioners to build upon our 
system, we have open-sourced the code for our 6-DOF gaze track-
ing module at https://github.com/edusense/edusense. The code 
and a sample demo for a classroom digital twin can be found at 
https://github.com/edusense/ClassroomDigitialTwins. 

5 CONTROLLED STUDY 
To assess the geometric accuracy of our classroom digital twins 
and the angular accuracy of our gaze tracking pipeline, we devised 
a controlled study, which used a series of known targets. This eval-
uation naturally complements our uncontrolled, in-the-wild study 
(i.e., real classrooms) discussed later. The latter is more ecologi-
cally valid, but because ground-truth gaze angles are unknown, 
it precludes assessing fne-grained metrics such as angular error. 
However, taken together, the two studies provide a holistic assess-
ment of our system’s feasibility. 

5.1 Procedure 
We ran the controlled study in an exemplary classroom to test the 
spatial accuracy of our 6-DOF gaze detection modules. To estimate 
the gaze accuracy of students we placed 17 AruCo markers in total 
across the classroom including 4 markers each on two two writing 
boards and two projectors, and one AruCo marker on the podium. 
This setup can be seen in Figure 1. We recruited 8 participants (2 
female) with a mean age of 26.8 years. We conducted the study 
across 6 rounds. In each round, each participant chose one of the 
21 diferent seating locations available in the classroom and then 
looked at each of the 17 markers one by one. This resulted in a 
total of 6 rounds × 8 participants × 17 gaze targets = 816 trails. 
For the instructor study, we recruited 5 participants (1 female) 
with a mean age of 24.8 years. 10 AruCo markers were placed to 
simulate the position of students in the classrooms. Each participant 
changed their position 5 times to simulate diferent positions for 
the instructors resulting in a total of 5 participants × 5 positions 10 
gaze targets = 250 trials. 

All participants gave written consent to their data and video 
being recorded. For each trial, we captured a random representative 
video frame and ran our analysis on that. Using this corpus of data 
we were able to calculate our angular gaze accuracy for students 
and instructors respectively. 

https://github.com/edusense/edusense
https://github.com/edusense/ClassroomDigitialTwins
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Figure 4: Sample scene from our controlled study with 3D 
gaze frustums overlaid in green. 

5.2 Results 
Given the known 3D locations of the gaze targets (captured via the 
AruCo markers), our pipeline can estimate the 6-DOF gaze for each 
user and therefore calculate the gaze accuracy in an automated 
manner. We found that our gaze estimation module has an average 
yaw error of 21.7° (S.D. = 2.6°) and an average pitch error of 20.9° 
(S.D. = 5.1°). For students, our yaw and pitch errors were 20.7° and 
17.6° respectively. For instructors, our yaw and pitch errors were 
24.8° and 31.7° respectively. The larger instructor gaze errors can 
be attributed to the fact that the instructors were standing, while 
the students were seated. Hence, this resulted in a more oblique 
viewpoint and a larger pitch error for this particular classroom. 

On average, across all trials and occupants, our system had an 
angular gaze error of 21.3°. This compares favorably to prior sys-
tems in Table 1. Aung et al. [8] reports an angular error of 38.3°; 
EduSense [3] uses the same number of cameras as our system, and 
demonstrates a gaze error of 34.6°. Prior work also did not calcu-
late higher-level semantics, such as dwell times across objects of 
interest. The higher accuracy aforded by our system enables us to 
explore these fne-grained uses and provides a robust platform for 
future researchers to build upon (Figure 2). 

6 IN-THE-WILD EVALUATION 
In addition to our controlled study, we also ran our system in fve 
real classrooms (see Figure 1, right and Figure 5), capturing data for 
one semester. These classrooms varied in physical size and shape, 
as did the number of enrolled students (and thus occupant density). 
We used this deployment to not only test our system’s stability 
and performance, but also capture data for a real-world evaluation. 
Before any video recordings were made, a researcher visited the 
class to explain the research project and the types of data collected. 
All instructors and all students had to consent to take part in the 
research, or the class was dropped from the study. 

6.1 Procedure 
To generate images for annotations, we frst pulled 2400 frames at 
random for students and instructors each. We only took frames that 
contained at least one person’s face in them for both the student 
and instructor views. These images were then annotated for three 
tasks, namely: 1) the number of false positive faces detected, 2) the 
number of missed faces, and 3) testing the accuracy of our gaze 
pipeline for the faces that were correctly detected. 

All images were annotated by a team of privately-hired crowd-
workers who were experienced in body bounding box and face 
annotation tasks. All data remained on university-controlled ma-
chines and encrypted over HTTPS. Additionally, all images were 
water-marked with overlays and machine annotations to signif-
cantly deteriorate value to third parties. 

For the frst task, the workers were asked to mark all the bound-
ing boxes of faces that did not contain a face. These included incor-
rect "ghost" bounding boxes, boxes on the neck and hands of people. 
These annotations were used to calculate the false positive rate of 
our face detection module in a classroom setting. The next task was 
to annotate all the faces that were missed by our model. For this, 
the annotators were asked to label all the faces that were visible 
(even partially), but missed by our face detection system. The last 
task was to help compute the gaze error of our system. Here, the 
annotators were shown a face bounding box with a gaze vector 
superimposed. For all the faces that were detected correctly, they 
were asked to evaluate whether the prediction was correct or not. 
An incorrect prediction meant a gaze arrow that was of by more 
than 15° in either yaw or pitch. Workers were provided exemplary 
images of correct and incorrect gaze detections to calibrate. Work-
ers were also provided a detailed document containing edge cases. 
Workers were encouraged to mark images with the ‘I’m not sure’ 
tag to discourage guessing. Each image was labelled independently 
by two crowdworkers. 

6.2 Results 
We now break down the results for our face detection and gaze 
estimation modules across all three tasks listed above. Across our 
experiments, our inter-reviewer reliability was 92.54%. In general, 
our face detection model had a false positive rate (faces that were 
detected incorrectly) of 4.37% (4.04% for students and 4.74% for 
instructors respectively). The low discrepancy between student and 
instructor frames is due to the common errors occurring in both 
cases - such as incorrect detections on chairs or hands. As such 
errors are agnostic to student or instructor viewpoints, we see a 
common rate of errors for both conditions. 

On average, our face detection module missed 4.5% of students 
faces and 0.83% of instructor faces. The lower miss rate for instruc-
tors can be chiefy attributed to rare occlusion of the instructor’s 
face (in contrast to students, who look down, partially cover their 
face with their hands, faces blocked by students in other rows, etc.). 

Of the faces that were correctly detected by our model, our gaze 
estimation accuracy did not vary much across students and instruc-
tors, having an accuracy of 90.03% and 91.09% respectively. This 
suggests that once a face is detected reliably, our gaze estimation 
module is reasonably robust to viewpoints and partial faces. 

7 LIMITATIONS 
While the results of our system look promising, there are several 
technical limitations that should be addressed. First is that our 
model does not track eye gaze directly, but rather makes use of 
head pose as a proxy for gaze. Furthermore, estimating point of 
gaze from the gaze vector still has some ambiguity in our system. 
A single gaze vector can intersect with multiple planes or objects, 
thus having multiple candidate focal points. In such cases, a cone 
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Figure 5: Exemplary digital twins (bottom row) of 4 classrooms created from combining the Instructor (top row) and Student 
(middle row) views. 

of gaze, rather than a point of gaze may make more semantic sense. 
Lastly, our algorithm can sufer from occlusion and lack of feld of 
view for bigger classrooms. As we only make use of two cameras 
to digitize whole classrooms, there are some cases wherein the 
students do not lie within the feld of view of the camera or are 
occluded by other students seated in front of them. 

Beyond gaze-specifc concerns, the concept of digital classroom 
twins as an approach to education research and professional de-
velopment also has limitations. For instance, simple capturing of 
sensor data is unlikely to sufce in order to make the data of use to 
instructors, as noted in our User Interface section. Instead, further 
processing likely has to be done. This means such a concept will 
need an ecosystem of applications that analyze or format the data 
in interpretable ways to make it useful to teachers or researchers, 
an area we hope to explore in future work. 

8 DISCUSSION AND FUTURE WORK 
The work in this paper contributes to a long line of research into 
technology to support professional development through replay. 
For instance, prior work has used video recall as a stimulus for 
teacher professional development (see e.g., [24]), allowing teachers 
to watch and refect on a 2D version of their own practice. Another 
promising new approach for professional development that has 
been explored recently is the idea of virtual classroom simulations 
(see e.g., [31]). Similar to medical or aviation simulations, such 
simulations allow participants to test out difcult, rare, or risky 
behaviors without taking action in the real world. In this approach 
a virtual classroom environment is created with simulated students. 
Then, student behaviors, dialog, and other types of interactions can 

be programmed into the simulation. Classroom simulations have 
been explored particularly with novice or pre-service instructors 
who have had little experience in the classroom, allowing them to 
practice before they stand in front of a room of skeptical students. 

The digital twin approach holds the possibility to combine the 
power of these two approaches. The twinned room could be re-
played over time, allowing it to act as a video recall, but in three 
dimensions and providing the opportunity to move around in the 
space and take alternate perspectives – such as in a virtual reality 
interface like that described above. A teacher could therefore really 
experience the class from any students’ perspective with greater 
immersion than a video can provide. On the other hand, it could 
also take on characteristics of a classroom simulation, improved by 
seeding that simulation with one’s own data in a model of one’s 
very own classroom. This could allow teachers to refect on and 
make new choices stimulated by a moment of their own teaching 
rather than hypothetical or invented situations. This approach has 
the potential to be much more powerful with greater relevance to 
even expert teachers. 

The work described in this paper therefore can help to open a 
new avenue for the future of professional development systems 
using digital twins. While we specifcally focus on gaze as a feature 
of interest, such a system could enable instructor professional de-
velopment across a range of classroom features. For instance, other 
contributing components of teacher immediacy include movement 
around the classroom, open and welcoming posture, facial expres-
sions, and more. Introducing audio features of the classroom would 
allow for exploration of student and teacher dialog situated in time 



CHI ’21, May 8–13, 2021, Yokohama, Japan Ahuja, et al. 

and space (e.g., are the students participating only in the front row 
of the class?). 

Beyond professional development, this concept is also one that 
holds potential for researchers. The ability to automatically detect 
a broad range of classroom features like gaze that are now situated 
more richly in their 3D context could facilitate the study of many 
open questions in the learning sciences. 

In our own work, we expect to next develop a teacher-facing 
interface for use as a professional development tool as described 
above. This will introduce a number of interesting challenges re-
garding the presentation of the digital twin environment, as well 
as its integration with other professional development supports 
such as trained human observers. We also intend to explore addi-
tional features beyond gaze in our digital twin environment, some 
of which are described above. 

9 CONCLUSION 
In this paper, we introduced the concept of a classroom “digital twin” 
to aid in both research and professional development. We describe 
our generalizable approach to capturing the physical environment 
needed for such a twin, and the sensing of a particular feature of in-
terest: instructor and student gaze. With this sensing approach, we 
ran two studies that have demonstrated the accuracy of our system. 
The frst, a controlled study using known targets, demonstrates 
that this system can reduce the error of prior non-worn classroom 
gaze systems by roughly half. The second, an in-the-wild study 
conducted in multiple and varied classrooms over the course of a 
semester, demonstrates the ecological validity of our approach. This 
work advances the literature on classroom gaze systems while si-
multaneously opening up new avenues for classroom research and 
professional development through digital twins, i.e., high-fdelity 
simulation environments that employ real data streams. 
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