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ABSTRACT
Using a phone while driving is distracting and dangerous. It
increases the accident chances by 400%. Several techniques
have been proposed in the past to detect driver distraction due
to phone usage. However, such techniques usually require
instrumenting the user or the car with custom hardware. While
detecting phone usage in the car can be done by using the
phone’s GPS, it is harder to identify whether the phone is
used by the driver or one of the passengers. In this paper,
we present a lightweight, software-only solution that uses
the phone’s camera to observe the car’s interior geometry to
distinguish phone position and orientation. We then use this
information to distinguish between driver and passenger phone
use. We collected data in 16 different cars with 33 different
users and achieved an overall accuracy of 94% when the phone
is held in hand and 92.2% when the phone is docked (≤ 1 sec.
delay). With just a software upgrade, this work can enable
smartphones to proactively adapt to the user’s context in the
car and and substantially reduce distracted driving incidents.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile
devices;

Author Keywords
driver detection; position sensing; in-car behavior; situational
impairments

INTRODUCTION
Smartphones are now ubiquitous and, over the years, their util-
ity has increased exponentially. Being immensely pervasive
and useful means users often choose to use their phones in dan-
gerous situations. For example, 127 people have died between
2014 and 2016 while taking selfies on their phones [10]. While
the users often ignore their safety, the phones are also unable
to detect danger automatically. The phones do not adapt ade-
quately to the user’s situation and often contribute to making
the situation more dangerous and amplify the associated risks.
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Figure 1. Lines detected in the photo captured by the phone when
docked on the windshield at (a) passenger’s right; (b) driver’s left; and
(c) driver’s right side. The lines capture the perspective of the geometry
of objects inside a car from different viewpoints.

One of the most common situations where phones increase
the danger to their users is while driving. A 2014 survey con-
ducted by National Highway Traffic Safety Administration
(NHTSA) showed that 398 drivers were killed and 33,000
drivers were injured in accidents due to cell phone usage while
driving [1]. Almost everyone knows that using a phone while
driving is dangerous, but every time a notification pops up
it demands attention. Driving creates a situational impair-
ment [15] for the user, and the user’s cognitive and visual
focus is on their primary task – driving. To minimize driver
distraction and improve safety, some apps (e.g., Waze) disable
the full set of functionalities while the car is in motion. It may
be a suitable safety measure to deter individuals from using
their phone while driving, but it is not enough. It asks the user
if they are the driver or the passenger. If the user chooses to
identify as a passenger, the full app functionality is regained.
While this can be dangerous for a driver, blocking the entire
phone can be counter-productive (especially because phones
are widely used as navigation devices in cars). Therefore, we
need the phones to sense and adapt to the user’s context, i.e.
driving, automatically.

Researchers have attempted to solve this challenge of detecting
if the driver is using phones or in-car infotainment systems
by instrumenting the car with electrodes [18, 5, 6], using a
wearable on the driver’s hand [12, 11] or inertial sensor data
on the smartphone [3, 19, 4]. However, these approaches
either rely on instrumentation of the car or user, or specific
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event triggers (e.g., detecting the direction in which the user
opened the car door), which are not scalable solutions. An
ideal system would identify if the driver were using their phone
out-of-the-box without any modification or in-situ training. To
this end, we present a lightweight, real-time, software-only
solution that leverages the smartphone camera to determine if
the driver or the passenger are using the phone. Given many
users now use their phone’s camera to unlock the phone, the
camera is the perfect sensor to sense the usage context too.
To build the system, we rely on the insight that irrespective
of the car, the interiors of the cars are very similar. The
exact placement, color, texture, etc. of the objects such as
the handlebar, sunroof, visor, windows might change, but the
basic geometry remains consistent. More specifically, when a
driver uses the phone versus the passenger, it shows distinct
perspectives of these shapes (geometries). We detect lines to
capture this change in perspective as shown in Figure 1. The
position and angle of these lines with respect to the position of
the user’s face provides enough information to train a robust
machine learning model to distinguish between the driver and
the passenger.

To develop and validate our machine learning models, we
perform two studies: (1) in 10 different cars when the phone
was docked to either the windshield or the air vents, and (2) 33
participants in 16 different cars to get different hand postures
and approaches to hold the phone while driving (to ensure user
safety the car was stationary). To elicit natural hand postures
from the users, we asked the participants to pretend as if they
were driving and using their phone. We demonstrate that
within a second, our software-only approach can distinguish
between the driver and the passenger with 95.5% accuracy
when the phone is docked and 94% accuracy when the user
holds the phone.

RELATED WORK
Sensing and countering driver distraction has been a long
standing problem. There are several causes of distracted driv-
ing, but we focus our paper on driving and phone use. For
such systems, there have been three distinct approaches in the
past: (1) to instrument the car with minimal custom hardware;
(2) to instrument the user (e.g., wearables); and (3) using the
smartphone itself to determine the user role. We look at each
of these categories in the following sections.

Instrumenting the Car
To aid in detecting driver distraction, one of the most common
and reliable approaches has been to leverage the car. The
variety of electronics such speakers at every door or the info-
tainment system typically in the middle of the car have been
previously used to predict the position of the person using a
device.

Yang et al. leverage the acoustics in a car to infer the position
of the phone in it [21]. They send a series of customized
high-frequency beeps using the car stereo. They then use the
time of arrival of the frequency back to the phone to estimate
its position in the car with an accuracy of over 90%. While
speakers are built into the car, the setup relies on a connec-
tion between the smartphone and the speakers. Secondly, the

evaluation of this technique was in a controlled environment.
The irregularity of human movement within the car may intro-
duce multi-path interference that may cause the accuracy to
diminish.

Another approach is to look inside the car using a camera.
Drivers often place a dashcam that continuously records data
about their driving; typically to mitigate insurance claims
in case of an accident. Researchers have used an inward-
looking dashcam to detect if the driver is using the phone
or not. Berri et al. used a small dataset of 200 images to
demonstrate that they can classify pictures of a person holding
a phone with 87% accuracy in 3 seconds [2]. Similarly, Se-
shadri et al. used an existing dataset of a dashcam mounted on
the windshield in the car to detect if the driver is making a call
using their phone [16]. These solutions require instrumenting
the car with external cameras, and they are only able to detect
phone usage when its places near the ear. They are currently
unable to solve the much larger problem of driving and texting.

Modern cars disable the touch systems on the infotainment
system in cars when they are in motion. To make it an adaptive
interface, researchers have investigated solutions that allow
them to discriminate between the driver and passenger. Carpa-
cio uses capacitive coupling to discriminate who is touching
the screen of the infotainment system with an accuracy of
99.4% [18]. They inserted an electrode in each seat of the
vehicle to measure the coupled signal between the capacitive
screen and the electrode. But, they are not the first to use
capacitive coupling to discriminate between users. Dietz et al.
send a unique signal through the capacitive touchscreen of the
device that is used by the electrode embedded in the seat to
discriminate driver or passenger screen use [6]. Such systems
are highly reliable but require custom hardware that makes it
hard to deploy at scale.

Instrumenting the User
The proliferation of wearables provides a new fixed sensing
point on the human body. Researchers have leveraged wear-
ables to detect different activities, most notably to detect driv-
ing. WatchUDrive is a technique that uses the accelerometer
and the camera on a smartwatch to distinguish between the
driver and the passenger [12]. They note that holding a steer-
ing wheel is a restrictive activity and the inertial sensor might
capture the repeatable pattern of motion and a camera on the
smartwatch might capture a part of the steering wheel if the
user is driving. They achieve an accuracy of 90% for a predic-
tion within every 10 seconds using inertial sensors, whereas
using just the camera, they were only able to obtain an accu-
racy of 62% within a 10 sec. window. Similarly, Liu et al.
also used wrist-worn wearables to detect steering as a proxy to
detect whose driving. But, their approach is limited to when a
user is turning the car. The signal obtained by the inertial sen-
sors has a unique signature when the user rotates the steering
wheel. They evaluated their approach and achieved an accu-
racy of 98% [11]. Although the results are highly promising,
the limited scope of the approach leaves room for improving
the driver distraction systems. Furthermore, the accuracy of
wearable solutions for activity recognition involving multiple
limbs (e.g., exercises [9], driving) is limited by their position
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Figure 2. Different positions in which we collected the phone’s camera
data. The phone was docked in 3 positions on the windshield, 3 positions
on the air vent, and used in the driver’s hand and the passenger’s hand.
The users were free to switch hands as they preferred.

on the body. In this case, the wearable is unable to capture
driving movements by the non-watch wearing hand.

Software-only Solutions
The most deployable systems are the ones that are self-
contained, do not require custom hardware or elaborate setup.
Several techniques have used the sensor suite present on a
user’s phone to determine if they are driving. Texive [3] is
a software-only solution that relies on inertial sensor data to
distinguish between the driver and the passenger with an ac-
curacy of 87.18%. It uses IMU data to predict which side
of the car did the person enter the car. It serves as a proxy
to distinguish between the driver and passenger. Similarly,
He et al. presented another system that relies on event trig-
gers such vehicle turns and driving over an uneven road to
discriminate patterns between the left and right side of the car
with 90% accuracy [8]. But, their approach looks at relative
changes in patterns of phones i.e., an underlying assumption
that two phones (users) are present in the car, and are accu-
rately synchronized in time (<100 ms). Wang et al. overcome
the issue of multiple phones, and suggest using an embedded
accelerometer in a cigarette lighter adapter, or the OBD-II port
adapter present in all cars [19]. Both approaches, however,
either require custom hardware or interfacing with each car’s
OBD-II port, which makes it hard to deploy at scale.

Besides the IMU, the smartphone also has other sensors such
as a microphone. Chu et al. used the fusion of audio and IMU
sensors to identify micro-movements such as car entry, the
direction of the action of wearing the seat belt, and the sound
of turn signal sound to classify the position of the phone [4].
They were able to achieve an accuracy of 85% across six users
in 2 different cars.

These approaches are based on event triggers, and failure to
detect even one event can have an adverse cascading effect
in determining if the driver is distracted. However, these
approaches provide a groundwork for repeatable patterns one
might observe in a car that we may be able to leverage. One
approach may be to detect things like seat belt direction, the
presence of a pedal, the position of the door w.r.t. the user. If
a system can reliably detect these objects or similar patterns at
any time, then we can eliminate the need for an event trigger,
and build a real-time system.

DATA COLLECTION
In our data collection procedure, we have two variables:

1. Placement of the Phone: docked-shield, docked-vent, held-
in-hand

2. Camera Used: back-camera, front-camera

In all conditions, the video was recorded at 30 frames per
second with a resolution of 720p. The field of view of the
camera is approximately 75 degrees.

Docked Phone
For the two docked conditions, we collected the data in 10
different cars1. We placed the phone in 6 different positions in
the car, 3 each on the shield [Phone 1-3] and the vent [Phone
4-6] as shown in Figure 2. The positions were:

1. the left side of the driver facing towards the driver

2. the middle of the car faced towards the driver

3. the right side of the passenger faced towards passenger

When the phones were docked, the users did not need to inter-
act with the phones. Thus, we did not recruit external partici-
pants for this part of the study. The members of the research
team drove the cars in an urban area to collect the data. We
chose this approach primarily because of the safety concerns
around recording videos in a moving car. We recorded videos
(avg. length = 3.5 mins.) from both the front and the back
camera.

Phone in Hand
When the phone is held in the hand, apart from measuring the
performance in different cars, we wanted to cover different
user behaviors, postures, and approaches to holding the phone
while driving. Thus, we recruited 33 participants (16 male, 17
female, mean age = 26.04) and recorded data in 16 different
cars2. To ensure the safety of our participants, we conducted
the study in a stationary car and simulated the in-hand condi-
tions as shown in Figure 2 [phone 7-8]. We chose to conduct
the study in a stationary car instead of a driving simulator to
capture signals in a real setting and to capture visuals of real
cars. When on the driver seat, the participants were asked
to pretend as if they were driving and using the phone at the
same time. They were encouraged to behave as they usually
would while driving (eyes on the road, hands on the wheel
etc.). Similarly, when the participants performed the task as a
passenger, they were encouraged to behave/type as they would
if they were passengers in a moving car. We did not control
their phone usage behavior. The participants were allowed
to move the phone or place the phone anywhere they desired.
In fact some of them did place it in their lap, or the center
console. This freedom allows us to capture more realistic data
1Ford Focus Hatchback, Toyota Prius, Honda Fit, Volkswagen Jetta,
Ford Escape, Honda Odyssey, Ford Focus Sedan, Subaro Outback
and Honda Civic ’06, and Honda Civic ’18
2Kia Rio, Subaru Outback ’14, Subaru Outback ’15, Honda Civic
’06, Honda Civic ’10, Mazda 3 ’17, Mazda 3 ’18, Toyota Corolla ’10,
Toyota Corolla ’16, Prius ’10, Prius ’15, Prius ’16, Nissan Rogue,
Volkswagen Jetta, Toyota Camry, Ford Focus Hatchback
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of phone usage in the car, instead of relying on predetermined
positions chosen by us. The phone orientation was also not
controlled, but all participants used the device in portrait mode
while driving.

The participants completed two everyday tasks on their phone:
(1) responding to text messages; and (2) changing music.
These are the two most common tasks a person performs in
their car that require continuous interaction. So, we used them
as our study tasks to capture realistic scenarios. Both tasks
were performed once as the driver and once as the passenger
by the same person in their car. For the duration of the study,
we recorded videos (avg length = 2.5 mins) from both the
front and the back camera. These videos were recorded using
an off-the-shelf app3 that allows the phone to capture video
while running in the background. This approach allowed the
users to focus on their task and not get distracted by the video
recording.

ALGORITHM
The goal of our work is to determine if the user of a phone is
driver or passenger. A practical approach to such a problem
needs to be lightweight, real-time, and immediately deploy-
able. So, we built a software-only approach that phone makers
can potentially push as a simple update.

We now discuss the underlying principle behind our approach.
When a phone is used in a car, it is typically either in a per-
son’s hand or docked on a dock. Upon examining our data,
we realized that the captured visuals look dramatically differ-
ent for held and docked conditions, and hence would require
separate models. Prior research has shown that inertial sensor
data can be used distinguish if the phone is docked or held in
hand [14, 7]. Despite not being a contribution of our work, for
completeness, we built a model to verify that we could reliably
do so. We used a Random Forest Classifier (default param-
eters, 10 trees) with the average delta in azimuth, pitch and
roll (window=1s) from the phone’s built in sensors, combined
with the number of peaks from each of x, y and z axis of the
accelerometer data (window=1s) as our features. We used the
leave-one-car-out cross-validation to achieve an accuracy of
99.8%.

Next, we built a separate machine learning model for each of
the two scenarios: {docked, in-hand}. We would like to point
out that we used continuous video recording to obtain a large
dataset of images. Our algorithm that uses the front camera
runs on each individual frame and does not need continuous
video for phone usage detection. To train both models, we
balanced our data to contain equal instances of images of
the driver and passenger. The algorithm for each situation is
described in the following subsections.

Docked Phone
When a phone is docked on a vent or windshield, the front
camera looks inwards into the car, and the observed scene
shows that regardless of the car make and model, the interior
looks very similar (Figure 1). Each car has windows, handle-
bars, seat belts, and sun visors. Depending on the car, the exact
3Background Video Recorder

placement, color, and texture of these objects might vary, but
the basic geometry of these objects remain consistent across
cars.

Additionally, a phone at different positions in the same car
has different perspectives, and the shape (geometry) of the
objects seen inside the car varies by the phone’s position. So,
instead of relying on detecting different objects inside the car
as a reference, we rely on detecting the shape and orientation
of various objects in the scene. When a user looks at their
phone in a car, the front camera captures many quadrilaterals
(e.g., handlebar, windows, visors). To encode the shape and
orientation of these quadrilaterals, we rely on one of the most
simple computer vision algorithms – detecting lines and used
it to capture the change in perspective. To do so, in either
of the docked positions, we extracted each frame from the
recorded videos. We first recognize and locate the position of
the user’s face. We crop two regions of interest (ROIs): (1)
above the face, and (2) under the face. We identify all possible
lines in these two ROIs using the Probabilistic Hough Line
Transform method. The lines above the face were used to
extract the perspective of the quadrilaterals. The lines detected
under the face were used to identify the orientation of the seat
belt. For each of the lines, we first filter out the lines that
intersect with each other. Next, we filter out the lines shorter
than 10 pixels. Finally, we calculate the slope of each line
using its leftmost point w.r.t. to the x-axis in the left-to-right
direction. Given seat belts are always along the diagonal, we
then filter the lines under the face with a slope between the
ranges of 40° and 50° and −40° and −50°.

Now, the number of lines detected in different frames may
vary. So, for a frame, if n lines are detected, then we make n
copies of that frame, each one representing a single line. We
calculate the following features for each copy of the frame:

1. (x,y) coordinates of the leftmost point of the line

2. the angle of the line (in degrees) measured at the leftmost
point w.r.t. to the left-to-right direction

3. (x,y) coordinates of the midpoint of the line

4. (x,y) coordinates of the centre of the bounding box that
encapsulates the face of the user.

We use a Random Forest Classifier (max_depth = 16, 10 trees)
to train our classifier with all copies of each frame as individual
training instances. Then, to obtain a single output, we take a
majority vote among all copies of the same frame. Finally, we
take a majority vote of frames across a window of m second
and vary m from 0 to 10.

From our data, we observed that the camera was often oc-
cluded when the phone is docked on the vent. While it worked
in some cars, the view was entirely blocked by the vent de-
sign in others (as shown in Figure 3). But, when a phone is
docked on the windshield, the back camera gets a completely
unoccluded view of the outside of the car. Compared to the
predictable observed geometry of various objects inside the
car, the scene outside the car is dynamic and unpredictable.
Thus, for the back camera, we use a different approach than
detecting lines and their orientations. Prior research has used
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Figure 3. Figure showing a limited view from the back camera of the
smartphone when it is mounted on the air vent.

vanishing point detection from cameras looking outside the
car as a tool to build driver assistance systems [17, 13]. We
observed that different phone positions and orientations on the
windshield lead to very different vanishing points as shown
in Figure 4. Thus, we use the vanishing point as a feature.
When the car is in motion, we look at the direction of the mo-
tion to determine the vanishing point. We start by extracting
optical flow trajectories from our video using Lucas-Kanade
sparse optical flow. The algorithm generates new keypoints
every five frames and tracks them continuously across frames
to produce a motion trajectory. A keypoint has a lifespan of
100 frames. A small lifespan ensures that we can obtain long
enough motion trajectories to compute features, while also
managing the processing time needed to track thousands of
point in real time.

We use a window of 1 second to observe the motion trajectory
and extrapolate lines for each one. We then use RANSAC
to compute the vanishing point for each window. We use
the coordinates of the vanishing point as a feature to train a
Random Forest Classifier (max_depth = 2, 10 trees).

Phone in Hand
In the second scenario, where the user holds the phone in their
hand, we collected the data in a stationary car for the safety
of our participants.

Study Design Decision
We acknowledge that collecting data in a stationary car reduces
the ecological validity of our evaluation. Not counting unsafe

Figure 4. Image showing different vanishing point from three different
positions: (a) phone on driver’s left; phone on driver’s right; and phone
on passenger’s right.

and illegal practices, there are two potential study methods
with different trade-offs: (1) using a driving simulator; and (2)
conducting the study in a stationary car. A task conducted in
a driving simulator is able to replicate the cognitive load of
actual driving, but is limited in the ’what’ a camera sees while
collecting the data. For each participant, it would only be able
to capture the same car profile and very limited changes in
lighting conditions. In contrast, an evaluation conducted in
multiple stationary cars is unable to replicate the cognitive
load of actual driving, but provides variance in car profiles.

We chose to collect data and evaluate the system in stationary
cars because, for a camera-based approach, variability in the
scene is more critical than varying cognitive load. Moreover,
there are only a limited set of positions a person could hold
the phone to be able to successfully text and drive. Thus, it is
more important to capture the variance in hand position. With
a high number of participants, we capture variation in hand
positions as well as car profiles, albeit with a trade-off against
a task with higher cognitive load. Besides, we encouraged
the participants to switch hand positions at random intervals
and reminded them to imagine they were driving and hold the
phone accordingly.

Next, we observed that a photo taken in a moving car versus
a stationary car looks similar. This similarity is further con-
firmed by our evaluation of the docked phone in a moving
vehicle. As can be seen in the video figure, our system can
continuously detect faces and lines regardless of whether the
car is stationary or moving. So even though the safety of the
participants limits our study design, we are confident that the
model developed on images from a stationary car will translate
well when the vehicle is in motion.

The study was conducted over two weeks in different locations
at different times of the day to ensure variability in exposure
to sunlight, weather, and any influence on the image quality
from environmental factors.

To elicit variance in hand positions, we did not control the
phone usage behavior of the participants. They were free to
use their preferred hand, and could even switch hands during
the task. In fact, some participants even kept the phone in
their lap or balanced it horizontally on the cup holder as they
attempted to finish tasks. The repeatable patterns seen inside
a car change based on how the person holds the phone. We
compute the line-based features the same way as we did in
case of docked phones. However, in this condition, the phone
is typically close to a user’s face and is unable to view the seat
belt (as shown in Figure 5). So, we only looked for lines in
the area above a person’s face. Again, the number of lines
detected in different frames may vary. So we make as many
copies of the frame as the number of lines identified in it. We
calculate the following features for each copy:

1. (x,y) coordinates of the leftmost point of the line

2. the angle of the line (in degrees) measured at the leftmost
point w.r.t. to the left-to-right direction

3. (x,y) coordinates of the midpoint of the line
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Figure 5. Examples of images captured with all 16 users where the seat belt was not visible when the phone was held.

4. (x,y) coordinates of the centre of the bounding box that
encapsulates the face of the user.

We use a Random Forest Classifier (max_depth=8, 10 trees)
to train our classifier with all copies of all frames as train-
ing instances. Similar to our other model, we use a majority
vote among all copies of the same frame (each line). Finally,
we take a majority vote of frames across a window of m sec-
onds (m: 0 to 10) to distinguish between the driver and the
passenger.

Figure 6. Figure showing variance in views seen from the back cam-
era when the phone is held. (A) shows that the camera can sometimes
capture car objects such as steering wheel and the infotainment system;
whereas (B) shows that most times the back camera is unable to capture
anything meaningful.

For the back camera, similar to docked-vent condition, the
images are often occluded and do not provide a consistent
signal. As shown in Figure 6-A, we can observe parts of the
car such as the stereo system and determine the orientation
of text (similar to our perspective of geometry approach);
however, the camera may not see anything at all depending on
how the phone is held as shown in Figure 6-B. Therefore, we
chose only to use the front camera to build our model.

RESULTS
Note that, when not explicitly mentioned, the results are for a
moving average window of size 1 second.

Docked Phone
When the front camera was used, in either {shield, vent}, we
performed a 10 fold leave-one-car-out cross-validation. In

the docked condition, we were able to distinguish between the
driver and the passenger with an accuracy of 92.2% (window
= 1s). We also evaluated the accuracy of our models over
different window sizes. Figure 7. shows a plot of change in
accuracy w.r.t. window size.

In our approach, we use lines as a proxy to detect the shapes
of different objects such as the sun visor and the seat belt.
Particularly, when we look for lines to detect seat belts, the
performance of our line detection algorithm may be affected by
the color and texture of clothes worn by a person. To evaluate
the robustness of our approach, we conducted an additional
study and recorded data (avg. length = 1min) wearing 28
different color and texture rich clothes with 2 participants (1
Male, 1 Female, mean age = 28). It includes clothes similar
in color to the seat belt, and designs containing shapes that
may confuse a line detection system (as shown in Figure 9
with classifier accuracy noted with each clothing). We used
our best classifier from our original study, and classified this
data. The average accuracy across all clothes was 91.8%. It
shows that our approach is robust and can work across a wide
range of colors and textures.

As stated earlier, the data from {vent, back} did not provide a
useful signal. In the {shield, back} condition, we performed
a 10 fold leave-one-car-out cross-validation. We were able to
distinguish between the driver and passenger with 72.3%.

We observed that the majority of confusion in this case stems
from confusion between the phone on passenger’s right side,
and the phone in the middle oriented towards the driver. For
all 10 cars, there is a distinct separation between the vanishing
point of the two phones. However, in 4 out of the 10 cars, the
relative position was flipped as compared to the remaining cars.
We postulate that this error stems from different placements
of phone in different cars due to varying interior design.
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Figure 7. Plots showing accuracy of distinguishing between the driver and the passenger with varying window size when (a) phone is docked; (b) phone
is in the hand (person-independent model); (c) phone is in the hand (car-independent model).

Phone in Hand
As stated earlier, when the phone is used in the hand, we
only get a consistently informative signal when we use the
front camera. We first validate our approach by reporting
the results of a 16 fold leave-one-car-out-cross validation. We
want to ensure that our machine learning model would work
across different cars. In this case, we were able to distinguish
between the driver and the passenger with 93.9% accuracy
over a window of 1 second.

Next, we wanted to validate that our model is resilient to the
variance in the way different people hold their phone while
driving. We performed a 33 fold leave-one-user-out cross
validation, and were able to distinguish between the driver and
the passenger with 91.9% accuracy.

When a user holds the phone in their hand, the position of the
phone is not static and the observed perspective might change.
Figure 8 shows varying perspectives of the same car object
(sun visor) in the same session. Despite this variance, we were
able to distinguish between phone use by the passenger and

Figure 8. Example of variance in image views captured at different times
by the same user when the phone was held as the driver.

the driver robustly. We also evaluated the accuracy of our
model over different window sizes as shown in Figure 7.

DISCUSSION
In this paper, we present a lightweight sensing technique to
determine if the phone is being used by the driver or the
passenger. Regardless of the placement of the phone in the
car, we are at least able to discern between the driver and
the passenger with 90% accuracy. Our continuous detection
mechanism allows mobile apps to detect and adapt to the user’s
context i.e., driving. Despite knowing that using the phone
while driving is dangerous, the smartphone demands attention
and causes distraction. To minimize driver distraction and
improve safety, mobile apps can leverage our technique to
adapt and simplify their interfaces.

We would like to emphasize that we used continuous video
recording to obtain a large dataset of images. Our algorithm
that uses the front camera runs on each individual frame and
does not need continuous video for phone usage detection. In
a real world scenario, a photo can be taken opportunistically
based on event triggers such as in-vehicle detection or user
touch. Secondly, our approach runs in real-time i.e., the data
can be featurized and processed in real time without storing
any sensitive information. It allows us to detect phone usage
by drivers in a privacy sensitive manner.

To validate our lightweight approach and robustness, we also
built a real-time phone app. On an Octa-core 2.2 GHz Cortex-
A53 android phone CPU, on average, it took 550ms to classify
each frame (image).

Limitations of Our Approach
While we were able to collect data for a docked phone in a
moving car, due to safety concerns, it is not possible to do
so for the phone in hand condition. We acknowledge that it
reduced the ecological validity of our study. But, to improve
the confidence in the robustness of our system, we recruited
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Figure 9. All the clothes used to evaluate the technical soundness of the line detection approach. Each image also shows the accuracy of data collected
while wearing that cloth, using the best classifier from the original data.
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Figure 10. Simplified interfaces for common mobile apps when the
driver is driving.

a high number of participants. It allows us to capture a wide
range of behavior exhibited by people as they pretend to drive
and text. Secondly, the features used in our machine learning
model do not rely on the motion of the car. We extract individ-
ual frames and only look at the geometry of the shape of the
objects.

Our approach to geometry recognition using lines is not per-
fect. A line detection algorithm is not completely general-
izable, but given our restricted search space- it works well
for our use case. We have two regions of interest: (1) above
a person’s head to capture the geometry of the objects in a
car (not affected by clothing); and (2) under the face of the
person to determine the seat belt. Here, we filter out lines in a
very narrow range of angles. We also conducted a study with
28 different clothing items of different colors and textures to
demonstrate the technical soundness of our technique. Our
results demonstrate that our approach is robust to different
textures, but we cannot account for all possible textures and
designs. There may be some clothing items that may cause
our system to fail.

Despite an informative signal, our approach to leverage the
back camera to determine the phone position/orientation did
not work due to high variance in localization of the vanishing
point across cars. However, the signal we obtained as quite
stable, only car-specific. A potential solution could be to auto-
matically teach the phone to build a car specific model. The
phone can learn the position and vanishing point correlation,
using the front camera approach as automatic position labels.

We are able to do so because our proposed front camera ap-
proach is robust and accurate. However, there are limitations
to its use as well. If the phone is docked exactly in the centre
of the car without any orientation towards either the driver or
the passenger, then there is no observed perspective change.
Our current approach may not be suitable for that scenario.
But, the camera and other smartphone sensors can still be

used to accomplish the same goal. The camera can observe
the direction of a finger touch to determine who touched the
phone screen. Prior research has also used capacitive imaging
to determine the angle and direction of the finger touch on a
smartphone [20], or grip information to determine hand pos-
ture to determine from which side of the car did the person
touch the device [7].

If the seatbelt is occluded or camouflaged due to a person’s
clothes, it may adversely affect the performance of our system
when the phone is docked. Our approach only uses the seatbelt
as a feature when the phone is docked. So, in the absence of
this signal, the aforementioned strategies of detecting finger
position and angle would still work.

Lastly, if the user truly wanted to, they can fool the system.
With clever positioning and unnatural orientation of the phone,
a driver can trick the system into thinking that they are the
passenger. This attempt to circumvent the lockout, may end
up increasing the safety risk. Clearly, a complete blockage of
functionality is not a good solution. So, we envision our work
as a sensing platform that other apps can leverage to reduce
the cognitive load of a driver and discourage bad behavior. We
discuss some examples below.

Design Implications
One simple and obvious change could be to not show notifica-
tions at all when the phone is oriented towards the driver. We
take it a step further to examine how commonly used mobile
apps would adapt their interface to promote safety (Figure 10).
We demonstrate mockups of two simplified app interfaces: (1)
music application; and (2) messaging.

While the car is in motion, our system can be leveraged to
detect if the phone is being used or oriented towards the driver.
In such a scenario, the music app can strip away other function-
alities such as music search and playlist creation. A simplified
version of the music app would only present minimal options
to control the currently playing song. It allows the driver to
skip and change songs, but blocks the more distracting activity
of music search.

Similarly, upon receiving a text message, the driver would only
be allowed to use voice to text if they want to respond. While
the car is in motion, the messaging app can block the driver
from using text replies that demands a higher cognitive effort.
The passenger on the other hand would be able to utilize the
full functionality of the app. Similar feature reduction can be
applied to any communication app such as messaging, Slack or
even email apps. Our low fidelity prototypes are not a design
guideline for future apps, rather a demonstration of how our
sensing technique can be used in practice to improve safety.

However, the use of our system as a sensing platform goes
beyond adapting the interface for safer driving. It can influence
policies that may benefit the user. For example, if a user never
drives and text, it may lead to lower car insurance rates being
offered for safe driving practices.

CONCLUSION
The utility of smartphones has increased exponentially in the
last decade. But, its ubiquity comes at a cost. The user often
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chooses to use their phone in dangerous situations, such as
while driving. Most current solutions either rely on custom
hardware or are not scalable to be used in real time. In this
paper, we present a fully automated, lightweight, software-
only solution that leverages the on-board smartphone camera
to determine if the phone is being used by the driver or the
passenger. We rely on observing the change in perspective of
repeatable shapes seen inside the car. We collected our data
in 16 different cars with 33 different users and achieved an
overall accuracy of 91.9% when the phone is held, and 92.2%
when the phone is docked (≤ 1 sec. resolution). A simple
software update can now enable smartphones across the world
to sense the context of driving and use it to adapt the mobile
app interfaces to reduce distracted driving accidents.
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