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Audio-based human activity recognition (HAR) is very popular because many human activities have unique sound signatures

that can be detected using machine learning (ML) approaches. These audio-based ML HAR pipelines often use common

featurization techniques, such as extracting various statistical and spectral features by converting time domain signals to the

frequency domain (using an FFT) and using them to train ML models. Some of these approaches also claim privacy benefits

by preventing the identification of human speech. However, recent deep learning-based automatic speech recognition (ASR)

models pose new privacy challenges to these featurization techniques. In this paper, we systematically evaluate various

featurization approaches for audio data, assessing their privacy risks through metrics like speech intelligibility (PER and WER)

while considering the utility tradeoff in terms of ML-based activity recognition accuracy. Our findings reveal the susceptibility

of these approaches to speech content recovery when exposed to recent ASR models, especially under re-tuning or retraining

conditions. Notably, fine-tuned ASR models achieved an average Phoneme Error Rate (PER) of 39.99% and Word Error Rate

(WER) of 44.43% in speech recognition for these approaches. To overcome these privacy concerns, we propose Kirigami, a

lightweight machine learning-based audio speech filter that removes human speech segments reducing the efficacy of ASR

models (70.48% PER and 101.40% WER) while also maintaining HAR accuracy (76.0% accuracy). We show that Kirigami can be

implemented on common edge microcontrollers with limited computational capabilities and memory, providing a path to

deployment on a variety of IoT devices. Finally, we conducted a real-world user study and showed the robustness of Kirigami

on a laptop and an ARM Cortex-M4F microcontroller under three different background noises.

CCS Concepts: • Security and privacy → Privacy-preserving protocols; • Human-centered computing → Ubiquitous
and mobile computing;

Additional Key Words and Phrases: Privacy, Acoustics, Internet of Things, Ubiquitous Sensing

1 INTRODUCTION
Audio-based ambient sensing approaches are increasingly prevalent in various application domains, such as

personal health monitoring [21, 26, 31], ambient environmental sensing [2, 5, 20, 29] and energy efficiency

optimization [8, 40] showcasing its growing significance in enhancing our overall quality of life. However,

the increased reliance on audio data in these applications has raised substantial privacy concerns, especially

considering the inherently sensitive nature of audio data and its potential to capture human speech. For instance,

users of smart speakers have shown dissatisfaction with the storage of sound on servers or sharing data with

third parties [12, 27]. To address these concerns, a common strategy is to apply a combination of audio data

featurization and speech filtering approaches, preferably at the edge, to reduce privacy concerns while still

ensuring the utility [8, 25, 26, 27, 29]. These methods attempt to process the raw audio signal locally on the device

and extract useful information from the audio signal while impeding speech information from leaving the device.

While these approaches have shown promising results in protecting user privacy by evaluating the intelligibility

of the processed audio, the emergence of deep-learning-based Automatic Speech Recognition (ASR) [1, 18, 36]

models poses new privacy challenges. While a human might not be able to decipher a featurized audio file, a

machine learning model trained/tuned on featurized data might be able to recognize the speech content. ASR
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Fig. 1. Ambient sensing applications that use microphones break down raw audio data (A) into its component frequencies,
FFTs (B), for meaningful feature extraction. Prior approaches have suggested filters (C) to eliminate speech while retaining
other data for privacy preservation. However, our study reveals that Automatic Speech Recognition (ASR) algorithms (D)
can be fine-tuned to recognize speech and phoneme information to an extent (E), demonstrating the limitation of such
featurization techniques. Our novel approach, Kirigami, mitigates the privacy risks of speech inferences from ASR-based
models by identifying and filtering likely speech segments on the edge while maintaining the accuracy of audio-based human
activity recognition tasks.

models, such as Whisper [36] or Wav2Vec [1], are trained on thousands of hours of multilingual speech data

to improve their robustness to different accents, background noise, and diverse languages. These modern ASR

systems are not limited to recognizing speech from raw audio but can be tuned to recognize speech content

specifically from the transformed audio, which was previously thought to be safe from privacy breaches, as we

show in this paper. As the outputs of prior approaches are not examined on modern fine-tuned ASR models, the

privacy implications remain unclear.

This paper evaluates the privacy risks posed by recent ASR models on prior audio filtering and on-the-edge

techniques. We analyzed four prior approaches representing different types of privacy-focused filtering techniques

on audio data [26], [20], [25] and [29]. We replicated these approaches and passed their featured data respectively

through fine-tuned ASR models, such as Wav2Vec2.0 [1] and Whisper AI [36]. We found that even after applying

the filters from prior approaches, some of the speech-related information, such as residual parts of phonemes

[3] (unit of sound that can distinguish words), were still present, and the ASR models were able to reveal some
information about the original speech as shown in Figure 1. To contextualize the privacy risks of existing audio

filtering approaches, we asked 10 participants to answer questions about the speech content of the recovered

speech information and found that the majority of the participants reasonably identified the topic or content of

speech, further highlighting the privacy risks. Until we can run a powerful ASR model such as Whisper AI on the

edge to remove speech-based audio, there is an urgent need for a lightweight approach to filter out sensitive

audio at the edge.
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Fig. 2. An architecture of an audio-based activity recognition approach that takes featurized audio as inputs for applications
such as cough recognition or event detection

To overcome these challenges, we present Kirigami, a lightweight edge-compatible speech filter that effectively

removes probable speech content while preserving non-speech content to maintain high utility value for activity

recognition applications. Unlike existing solutions that may still reveal residual speech information, Kirigami

takes a more conservative approach of completely discarding likely audio content on the edge. For this reason,

we believe that Kirigami will remain effective even as ASR models become increasingly sophisticated in the

future. Furthermore, we demonstrate Kirigami’s effective adaptation to real-world environments through an

innovative background masking method, enhancing its ability to filter ambient sounds before processing speech

events. Moreover, Kirigami allows adaptability through custom post-filter featurization methods, allowing users

to users to customize the filter for specific application needs using techniques like Log-Mel Spectrogram and

Mel-Frequency Cepstral Coefficients. This flexibility enhances Kirigami’s applicability across a range of scenarios.

Our results demonstrate that Kirigami is highly effective in suppressing human speech inference even when

using fine-tuned ASR models. Kirigami can run on low memory, is computationally efficient, and has been tested

and verified on embedded hardware platforms, making it a viable solution for real-world IoT use cases.

Overall, we make the following contributions:

• We systematically examine the privacy risks associated with various existing privacy-focused featurization

approaches. We show that, on average, fine-tuned ASR models can recognize speech with a 39.99% Phoneme

Error Rate (PER) and 44.43% Word Error Rate (WER) for these approaches, posing significant privacy risks.

• We conducted a user study to contextualize the privacy implications of PER and WER values. On average,

90% of the participants were able to infer the speech topic when the predicted sentence had a WER below

80%. Additionally, 80 % of participants could deduce the sentence topic from its phoneme prediction up to

60% PER, revealing privacy risks in current audio filtering. Based on our user study results, we derive a

privacy cut-off of PER at 60% and WER at 80%, above which little information about speech can be retrieved

• We present Kirigami
1
, a lightweight machine learning-based audio speech filter, which removes likely

human speech segments while preserving other sounds to maintain high activity recognition accuracy. We

evaluate Kirigami with fine-tuned state-of-the-art ASRmodels and show that our Kirigami filter achieves, on

average, 70.48% PER and 101.40% WER while ensuring 76.0% accuracy on activity recognition applications.

In addition, Kirigami can be implemented on inexpensive and resource-constrained microcontrollers,

making it deployable on a wide range of IoT edge devices.

• Finally, we conducted a real-world user study to assess the robustness of Kirigami in filtering speech in

environments with diverse background noise while also ensuring the preservation of activity recognition

accuracy, thereby demonstrating the consistent performance of Kirigami in the real world.

2 BACKGROUND
In this section, we introduce the common audio-based ambient sensing solutions and discuss their architecture,

with a focus on their feature engineering approaches to denature the audio data.

1
www.github.com/synergylabs/kirigami
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2.1 Microphone for Activity Recognition
Microphones are widely used in ambient sensing to support various applications surrounding Human Activity

Recognition(HAR), such as health monitoring [26, 28, 42, 43], monitoring the number of people present in a

building, and identification of room occupancy and activities of people [8, 24, 39]. In addition, audio capture can

be utilized for assistive services, particularly for populations with hearing disabilities, where it can be used for

audio scene analysis, audible event alerts, and new wearable devices that work in conjunction with microphones

inside smart buildings [33]. In such applications, the collected ambient audio data is often denatured to ensure

sensitive information, such as speech, is not collected or sent to the cloud.

A typical ambient sensing solution with a microphone consists of three main sub-components: audio sub-
sampling, audio featurization, and data filters, as illustrated in Figure 2. The audio sub-sampling component

records the time domain ambient audio at different configurable sampling rates based on the application. This raw

audio data is then passed through an audio featurization algorithm to convert them into frequency domain signals

to reduce the data dimensionality and in some cases to denature the data. In general, Fast Fourier Transforms

(FFTs) are used to convert the raw audio signal into a frequency domain representation critical for extracting

useful information from the audio signal. Next, various data filtering approaches, including low pass filters, can

be employed to eliminate mid to low-frequency bands containing speech information or background noise from

the processed signals. The filtered FFT data is then subject to further feature extraction using various audio

processing techniques such as Mel Frequency Cepstral Coefficients (MFCCs), filter banks, or spectral features.

These extracted features are then used by ML models to classify and recognize audio based events or activities.

2.1.1 Privacy v.s. Utility Tradeoffs for Speech Filters. While featurized data can be sent to a cloud backend, where

speech can then be filtered, it is generally considered better to do this on the edge [4] for privacy to prevent speech

data from being sent in the first place. In addition, any filtering approach needs to balance privacy (i.e. detecting

actual speech segments) and utility (i.e. avoiding filtering non-speech segments) to be useful for real-world

activity recognition. In general, audio-based speech filtering approaches can be categorized into four types: time
domain based, frequency domain based, feature-based, and model-based.

Time domain-based filtering involves techniques such as reducing the audio signal’s sampling rate or calculating

statistical values such as minimum, maximum, std-dev for a time-period of values. While doing so may be effective

at protecting speech privacy, it reduces the utility for downstream HAR applications since sub-sampling can

remove important features of the audio signal (e.g. high frequency signals) and not provide enough information

to detect activities. Feature-based filtering, extracts specific speech features to speech, such as a spectral envelope

or harmonic structure, and use them to remove speech segments. This approach can still affect utility, as it may

filter out non-speech sounds. Alternatively, a model-based approach uses ML models to recognize and filter

speech. This approach can be highly effective but is computationally expensive, and not available on edge devices

with limited computational power and storage.

2.2 Phonemes in Audio
A phoneme is a perceptually distinct unit of sound, that can distinguish one word from another in a specified

language. When speaking, various phonemes can be produced by adjusting the air passage in the vocal tract.

Consonant sounds result from restricting the airflow, such as using different lip, tongue, or teeth positions,

whereas vowel sounds occur when the airflow is less restricted and the mouth is more open [30]. Understanding

the phoneme structure of a language is crucial in various areas, such as linguistics, speech recognition, and natural

language processing. Typically, the English language is composed of 44 phonemes, including 24 consonants

and 20 vowels [3]. The 39-phoneme set illustrated in Figure 3, derived from the Carnegie Mellon Pronouncing

Dictionary (CMUdict) [10], is widely employed in various ASR and NLP applications. Figure 4 shows the unique

frequency spectrum signature that indicates the corresponding phoneme. For example, the frequency spectrum

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 36. Publication date: March 2024.
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Fig. 3. The 39-phoneme table of CMUdict[10]
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Fig. 4. The phoneme and grapheme of an example word "pizzerias".Phonemes are the individual speech sounds composing
words, while graphemes are the corresponding letters or letter groups representing those sounds.

for the sound z shows that almost all of the frequency spectrum values are activated in comparison to the other

phoneme information. Overall, phonemes as features play an important role in speech recognition tasks.

2.3 Deep-learning-based Automatic Speech Recognition Models
Recently, there have been significant strides in Automatic Speech Recognition (ASR) models making them

even more accurate. Deep learning models, such as recurrent neural networks (RNNs), convolutional neural

networks (CNNs), and transformer models, have been trained on large speech corpora and have demonstrated

state-of-the-art performance on a variety of benchmark datasets [15, 32]. More recently, large ASR models such

as Wav2Vec [1] have been trained on several hundred thousand hours of multilingual speech data, increasing

their robustness to different accents, background noise, and diverse languages. Leveraging the advantage of

pretraining, these models can quickly learn general representations of speech patterns and phonetic features

(see Fig 4), even with low-fidelity or denatured data, as well as handle variations in speaker accent and speech

rate. For example, Whisper [36] combines an encoder-decoder model with a context network to improve the

modeling of long-term dependencies in speech. Wav2Vec uses contrastive learning to train a model to distinguish

between a correctly aligned speech segment and a randomly sampled corrupted segment [1]. Similarly, other

transformer-based models such as BERT [9] and GPT models [14] can also be fine-tuned to achieve impressive

results for many down-stream tasks, including ASR [19, 44]. These advancements pose a significant challenge

to edge speech featurization, and filtering approaches as modern ASR systems can be fine-tuned to potentially

identify speech content even from transformed audio data, as we show in this paper.
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2.4 Threat Model
Based on our review of the relevant literature on audio privacy techniques used in several activity recognition

applications [5, 20, 29, 42], we consider a sophisticated adversary (following the Dolev-Yao model [11]) who has

full knowledge of the audio featurization methods used by the device or application. We also assume the adversary

wants to extract speech from the featurized and transformed data sent by a device that senses audio. We assume

that the adversary does not have direct access to compromise the device itself (i.e., it cannot change its firmware).

We also assume that the adversary has the knowledge to replicate the same audio transformation on the speech

datasets to use as training data. The adversary can also try to invert any transformation using approximation

techniques, for example, using inverse Fourier Transforms or inverse Principal Component Analysis (PCA). The

adversary has access to public speech datasets, such as TIMIT [15] and Librispeech [32], to public ASR models [37],

and can even fine-tune these models. Finally, we assume that the adversary has access to featurized/filtered audio.

In a real-world scenario, an adversary capable of launching such an attack can be, for example, an application

that uses audio data to identify activities such as cough, an honest-but-curious audio-to-HAR cloud API service

provider, or an external hacker. Based on these assumptions, we consider three potential adversarial scenarios:

S1 - Scenario requiring low effort: An adversary downloads a pre-trained ASR model (no fine-tuning). Then,

they try and reverse-engineer the featurized and filtered audio data using an inverse PCA or inverse FFT. The

resulting data is in a format that the various ASR models expect, and the adversary passes the data to them to

infer speech segments.

S2 - Scenario requiring moderate effort: An adversary downloads a pre-trained ASR model. They fine-tune

the ASR model by replicating the same audio featurization techniques used on an annotated speech dataset to

create a training set. The adversary also creates a pipeline to transform the featurized audio data into the same

shape as the ASR model requires. During training, the adversary re-trains a small subset of the layers on the ASR

model with pre-trained weights loaded while freezing the gradients of the rest of the model. Finally, the adversary

processes the target audio data into the same shape dimensions as the original ASR model to infer speech.

S3 - Scenario requiring high effort: An adversary downloads a pre-trained ASR model. To fine-tune the ASR

model, the adversary replicates the audio featurization techniques on an annotated speech dataset to create a

training set. The adversary also creates a pipeline that can transform the featurized audio data into the same

shape as the ASR model requires. The adversary trains all the layers on the ASR model with pre-trained weights

loaded. Finally, the adversary processed the target audio file into the same shape dimensions as what the original

network was trained on.

3 RELATED WORK
Prior works that use audio for activity recognition have proposed different methods to protect audio privacy

while preserving the utility of detecting activities.

Table 1. Summary of evaluated speech filtering approaches

Filtering Approach Fourier Transform Configuration Filter Type Filter SummaryWindow-Size Stride-Size
CoughSense [26] 512 256 Feature STFT concatenation (150ms), PCA (10 components)

Synthetic Sensors [25] 256 128 Frequency Domain Reduced FFT (10 windows/s)

PrivacyMic [20] 256 128 Frequency Domain Low Pass Filter (<300 Hz)

SAMoSA [29] 600 30 Time Domain Subsampling (1kHz)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 36. Publication date: March 2024.
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3.1 Audio Privacy Filters for Activity Recognition
Researchers have proposed various audio filtering methods to remove speech information from audio, including

data degradation techniques to sample FFTs at a lower rate or completely drop FFT data from a certain frequency

band. These approaches aim to protect user speech data while allowing other audio data that are useful for

activity recognition, but their efficacy varies significantly, and their limitations must be considered. Table 1 shows

the summary of different speech filtering approaches presented in the prior work.

Coughsense [26] is one of the earliest works to propose a cough detection system that utilizes a low-cost

microphone to detect coughs accurately in real-time. They reduced speech intelligibility by aggressively aggre-

gating 150ms of sound and extracting ten principal components from principal component analysis on cough

sounds. They showed that their system could classify coughs with high accuracy. Iravantchi et al. [20] proposed
a daily activity recognition system that utilizes inaudible frequencies in the audio signals to preserve privacy.

Such an approach requires special microphone sensors that capture ultrasonic and infrasonic sounds and the

usual microphone that collects sounds in the audible range. Filters can be implemented on microphone hardware

to filter out frequencies from 300 Hz to 8kHz.

Another line of work focuses on more generic transformations to hide speech in audio. Chen et al. [7] suggested
a method to filter speech from audio by replacing the vocal tract transfer function of vowel regions in audio

with the transfer function from prerecorded vowels. SoundShredding [23] proposed a privacy-preserving audio

transformation in which the order of frames from MFCC features is randomized. The commonly used method

of evaluation in these approaches includes recruiting participants to listen to the processed audio clips and

examine if any speech content can be picked or to rate the extent of clarity of the audio clips. Another approach

is to pass through an existing speech-to-text service such as Google Speech Recognition. While the ability to

recognize speech was shown to be limited after using these transformations was evaluated under human listening

experiment [7, 20, 26, 29] or passing through existing speech-to-text API [20, 29], the threat from recent powerful

machine-learning-based ASR models was not considered.

4 FEASIBILITY OF INFERRING SPEECH FROM FILTERED OR FEATURIZED AUDIO
Two reasons to evaluate the feasibility of ASR models to infer speech from featurized audio are: (a) our observation

of the residual phoneme information available in the output filtered data from prior approaches, and (b) the ability

of the deep learning-based ASR models to be fine-tuned and learn from featurized data. In prior approaches,

a speech filter such as a time or frequency-domain filter is applied to an audio signal. These approaches often

remove certain frequency components associated with human speech. However, not all phoneme information

is removed, and some residual information may remain in the filtered signal. Figure 5 shows the spectrogram

of the data after prior filtering approaches are applied. This residual phoneme information can be seen in the

form of different acoustic characteristics, such as spectral shapes specific to spoken words or phonemes. For

example, the FFT output after applying the CoughSense filter [26], for the phoneme "iy" has unique spectral
patterns still present around the 1 kHz frequency range. Similarly, for PrivacyMic [20], we can see that unique

spectral patterns are present around the 250 Hz frequency range for the same "iy" phoneme. An adversary can

exploit this residual phoneme information by using ASR models. An ASR model trained on raw audio can still be

fine-tuned for featurized audio and does not need to be trained from scratch. These models can learn complex

patterns and representations from data through training over a large speech data set such as TIMIT[15].

Next, we describe all ASR models that we evaluated and detail the procedure to mimic speech inference

attacks. We tested two kinds of models based on the type of inferences the models made: phoneme and word. We

summarize the ASR models in Table 2.
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Table 2. The list of evaluated ASR models against audio privacy filters

Attack Model Inference Type Pre-Training (Hours) Fine-Tuning (Hours) # Parameters Metric
CRDNN Phoneme 5 (labeled) 5 (labeled) 10M PER

Wav2Vec Transducer Phoneme 53.2k (unlabeled) + 960(labeled) 5 (labeled) 318M PER

Whisper AI (Pretrained) Word 680k (labeled) 0 769M WER

Whisper AI Word 680k (labeled) 5 (labeled) 769M WER

4.1 Fine-Tuning Phoneme-based Speech Inference Models
Phoneme prediction models can be utilized to infer phonemes from featurized audio data. As opposed to word-

level speech recognition, phoneme recognition offers the benefit of having considerably fewer prediction targets

(e.g. 39 phonemes in CMU-Dict [10]), alleviating the concerns about the size of the vocabulary [6]. Moreover, we

speculate that in the case only part of a word can be inferred, phoneme-based models might provide a chance for

the human attacker to infer the complete word based on the context with only the predicted parts.

4.1.1 Convolution Recurrent Deep Neural Network (CRDNN). The CRDNN model combines Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), and Multi-Layer Perceptrons (MLPs). The CNN layers

extract features from spectrograms of raw audio, while the RNN layers allow the network to find sequential

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 36. Publication date: March 2024.



Kirigami: Lightweight Speech Filtering for Privacy-Preserving Activity Recognition using Audio • 36:9

information for phoneme prediction. Connectionist Temporal Classification (CTC) [18] is integrated into the

architecture, allowing the model to handle varying lengths of input and output sequences without requiring

explicit alignment.

We adopted the CRDNN model to infer phonemes from filtered speech data based on implementation from

SpeechBrain [37]. We convert the audio features obtained from different audio filtering techniques, through

rescaling and cropping, into spectrogram-shaped representations with 40 features at each time window.

Table 3. Sample speech inference results and Phoneme Error Rate (PER) from the CRDNN model.

Original Segmented Phonemes Privacy Filters Predicted Segmented Phonemes PER

pizzerias are convenient for quick lunch

p-iy s-er-iy-er-z er-k-n v-iy-n-y-ih f-aa-r-k-w-ih k-l ah-n-ch

CoughSense [26] p-iy-t-ih-ay iy ih-z-ih-k-m b-ih-n-y-ih f r-ay-k-w-ih m-ah-n-s 44.12%

Synthetic Sensors [25] s-t-ih-r-iy ih-z-k-ah-m p-iy-n f-aa-r-k-w-ih-l-ah-n s 50.00%

PrivacyMic [20] p-iy p er-r-iy-ih-z-ih k-m-b-ih-l-ah f-aa-r-t-r-ae n-ah-jh 52.94%

SAMoSA [29] dh-ah-p-r-aa p-er-d-ih-s p-l-ih-n t-ih-k ih-n-d-ih-s t-r-ey dh-ah-p-r-aa p-er 97.05%

december and january are nice months to spend in miami

d-ih-s-eh-m b-er-ng-jh-y-ae-n y-uw-er ih-n ay-s-m-ah-n-th s-t-ih-s p-eh-n-ih-n m-ay-ae m-iy

CoughSense [26] d-ih-s-ih-m-er-z eh-n-iy er m-aa-s m-ah-n s-d-ih-s p-ah n-ih-m aa-ih n-iy 45.45%

Synthetic Sensors [25] dh-ih-s-ih m b-er-ih-z eh m r-eh r-ih-n-ay-s m-ah-n t s p-r-ih-n-ih m-ay-ih-n m-iy 43.18%

PrivacyMic [20] dh-ah s-ih-ng-g-er-n jh-eh-n-er-l-iy ih-m-ay-s m-ih-n-s t-ih-s-p-ih-n-ih-ng l-ay-b-l-iy 45.45%

SAMoSA [29] dh-ih-s-p-aa-r k-ih-n-t-ih k-s-p-er d-ih-s-t-r-ey dh-ih-s-p-eh-r-ih k-ih-n-t-ih k-ih-n 77.72%

basketball-can-be-an-entertaining-sport

b-ae-s-k-ih b-aa-l-k-ih-n b-iy ih-n eh-n-t-er ch-ey-n-ih-ng s-p-aa-r

CoughSense [26] b-r s-t-ih b-r-k-ih-n b-iy-ih-n t-ih k-ey-m-ih n-s p-r-ay 32.43%

Synthetic Sensors [25] dh-ae-f-ih-l-aa k-ih-n m-ey-n er s t-ey n-ih-ng-z b-aa r 48.65%

PrivacyMic [20] dh-eh-s-t-ih b-ae-k-ih-n w-ah-n ih-n-t-er t-uw ih-n-iy s-t-r-ey s 54.05%

SAMoSA [29] dh-ih-s-p-aa-r t-ih s-p-l-ih-n t-r-iy-k ih-n-d-ih-s t r-iy-k-ih-n 72.97%

4.1.2 Transducer with Pretrained Wav2Vec 2.0. Transducer models, also known as RNN-T (Recurrent Neural

Network Transducer) models, are a type of end-to-end ASR system that directly map input speech features to

target text without requiring any explicit alignment between them [17]. These models consist of an encoder, a

decoder, and a joint network, which together predict the output sequence in an autoregressive manner. Wav2vec

2.0 is a self-supervised pretraining method that learns powerful speech representations from raw audio waveforms

by exploiting the temporal structure of the data [1]. Studies have shown that a pre-trained Wav2vec model leads

to better performance than using handcrafted features, such as the Mel-frequency cepstral coefficients (MFCCs)

or filter banks, as the ASR models can benefit from the rich and expressive features that wav2vec learns from

large amounts of unlabeled audio data [13, 37, 41].

We used an implementation of the Transducer model from SpeechBrain [37] and fine-tuned the model starting

from an existing checkpoint trained using the TIMIT dataset [15]. We used the Wav2Vec2-Large-LV60 to extract

features from audio inputs, which contains 317M parameters and is pre-trained on 53.2k hours of unlabeled

audio data and 960 hours of speech data [1]. While the resulting filtered audio from many audio privacy-

focused featurization techniques transforms audio into the frequency domain, with the Wav2Vec 2.0 encoder, the

Transducer model takes waveforms as inputs. To make the model compatible with the spectrogram-like shape

resulting from different featurization approaches, we applied the Inverse Fast Fourier Transform (IFFT) to obtain

a waveform representation from the spectrogram-shaped representations. All weights of the model are fine-tuned

using the TIMIT dataset.

4.1.3 Phoneme Post-Processing. Directly interpreting the phoneme outputs might still be challenging for in-

experienced adversaries. To enhance the speech inference practicality and to better understand the privacy

implications of the tested audio filtering techniques, we perform the following post-processing on the phonemes

output. Our first step is to segment the phoneme predictions into groups, in which each group of phonemes

likely represents a word. We trained a bidirectional LSTM sequence tagging model to segment the phonemes

using the ground truth TIMIT phonemes and words, which achieved 98.6% per-tag accuracy. In addition, we used

a heuristic-based approach that breaks at ’sil’ (silence) phonemes unless there are less than four consecutive

predicted non-silence phonemes in prior, which is likely due to prediction error. After segmenting the entire

phoneme sequence prediction, we used Pincelate [35], an open-source tool that performs phoneme-to-grapheme

and grapheme-to-phoneme conversion, to spell the probable word for each segment of phonemes. Although the
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Table 4. Sample speech inference results and Word Error Rate (WER) from the Whisper model

Original sentence Privacy Filters Whisper (Fine-tuned) WER

pizzerias are convenient for quick lunch

CoughSense [26] pitcheeers are convenient for a quick lunch 33.3%

Synthetic Sensors [25] his barriers continued to overlap 100%

Privacy Mic [20] peculiar is a conveyor for a quick lunch 83.3%

SAMoSA [29] people often go for in quick evening 83.3%

december and january are nice months to spend in miami

CoughSense [26] decembers are nice mountains to spend in miami 40%

Synthetic Sensors [25] december and jan are make sure you save money to visit my website 90%

Privacy Mic [20] the figure here may attach to the spring and water 100%

SAMoSA [29] decide and jan are moving to the may 70%

basketball can be an entertaining sport

CoughSense [26] basket bowl can be an immediate sport 50%

Synthetic Sensors [25] basketball can be found in video game 83.3%

Privacy Mic [20] bask be an enter 66.7%

SAMoSA [29] ballers are on an extreme sport 66.7%

spelling of the sentence is imperfect due to the phoneme inference errors, it still provides hints to infer the speech

content. Table 3 shows the inferred segmented phonemes using the CRDNN model. In some cases, even after

filtering, the inferred phonemes can sound very similar to the original sentences. For example, when using the

CoughSense [26] filtering approach, the CRDNN model was still able to capture p-iy-t-ih-ay iy ih-z, which is very

close to the pronunciation of the word pizzerias. When the PER value increases, transcribing the words is not as

straightforward as one needs to spell the words and consider which phonemes might be incorrect predictions.

The output dh-ah s-ih-ng-g-er-n for PrivacyMic [27], for instance, still sounds similar to the word December, but
directly identifying the word without knowing the original sentence can be challenging.

4.2 Fine-Tuning Word-based Speech Inference Models
Whisper is a Transformer-based encoder-decoder model, more commonly known as a sequence-to-sequence

model [36]. Unlike Wav2Vec, which was primarily trained on unlabelled data in an unsupervised manner, Whisper

was trained on 680k hours of labeled speech data, such as LibriSpeech [32] using extensive supervision with

769M parameters. We used the pre-trained Whisper medium checkpoint and then fine-tuned the model to the

different types of audio features obtained from the prior filtering techniques discussed in the previous section.

Since the Whisper model expects log-Mel spectrogram as input, we convert the audio features obtained from

different audio filtering techniques to log-Mel spectrograms. We then use this information to fine-tune the model.

During the fine-tuning step, Whisper’s parameters are updated to match the specific characteristics of the target

word prediction, such as its phonetic spectral properties.

Table 4 shows examples of sentence predictions from Whisper pre-trained and fine-tuned ML models when we

apply different filtering techniques. In certain cases, the predicted sentences are similar to the original sentences.

For example, in certain instances, even after applying the CoughSense [26] filtering approach, the fine-tuned

whisper model successfully predicted all the words except for "pitcheeers" in the example "pizzerias are convenient

for quick lunch." Furthermore, it is observed that as the WER value increases, the distinction between WER values

becomes less clear in terms of what information they may reveal. For instance, although an example sentence

prediction from PrivacyMic has 90% WER, the prediction from Synthetic Sensors with the same WER still reveals

some of the original speech information (such as words like "december" and "jan"). In addition, we found WER

may appear high for short sentences, due to the number of words normalizing it, and thus predicting only a few

incorrect words will be enough to raise WER to a high value.

4.3 Need for PER and WER contextualization
Notably, as the above results show PER and WER values by themselves are only part of the story in terms of

understanding the potential privacy concerns with the parts of the original speech that may still be reconstructed

using ASR approaches. In addition, all the words in a sentence are not the same in terms of what they reveal
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about the conversation and different sentences with similar WER/PER values may lead to less (or more) privacy

concerns. Finally, the data and examples for different featurization approaches mentioned in this section are

merely illustrative to show what is possible by re-tuning some of the ASR models. In Section 6.2 we provide a

detailed evaluation of Kirigami as compared with various prior approaches on a larger corpus of speech data in

terms of average PER and WER values. Furthermore, to contextualize different PER and WER ranges in terms of

what they can still reveal, we performed a separate user study, the results of which are reported in Section 6.4.

5 KIRIGAMI: LIGHTWEIGHT SPEECH FILTER
As shown in the previous section, prior approaches on preserving user privacy are susceptible to inferring speech

with the latest state-of-art fine-tuned ASR models. A key reason for this is that these approaches focused on

degrading data or utilizing feature-reduction strategies to filter potential speech segments. However, modern

ASR models such as Whisper [36] are trained on a broad spectrum of acoustic features and linguistic contexts

that can take advantage of any residual speech information, such as phonemes, making them less susceptible to

conventional privacy-preserving techniques. More importantly, as the development and optimization of ASR

models progress in the future, their reliance on any residual speech segments to enhance ASR performance

increases, highlighting the necessity for new strategies in preserving privacy. Consequently, our approach focuses

on the detection and removal of data segments containing speech-related information, including phonemes. This

ensures a more robust mechanism to safeguard user privacy within the evolving realm of ASR technology. Our

design of Kirigami is based on a set of key insights. First, the detection of speech information (phonemes) can

be modeled as a binary classification task, for which shallow machine learning models may suffice in terms of

reasonable accuracy. Second, these shallow ML models can be deployed on a wide variety of hardware as they are

memory and computationally efficient. Third, the Kirigami filter can promptly discard detected speech segments

at the edge to safeguard speech privacy, allowing full-featured FFT data to pass through when non-speech

segments are detected, thereby optimizing utility performance.

5.1 Machine Learning-based Kirigami Speech Filter
Our proposed solution of a speech filter on the edge involves constructing a lightweight yet efficient real-time

speech detector. The overall objective of the speech detector is to classify each time frame of the Short-Time

Fourier-transformed (STFT) audio data as either speech or non-speech. Formally, let 𝑋 ∈ R𝑑 be a d-dimensional

vector representing a time frame of STFT data. For example, 𝑑 = 128 when the window size of the STFT is

256. The task of the speech detector is to learn a mapping 𝑓 : R𝑑 → 0, 1, where 𝑓 (𝑋 ) = 1 indicates speech and

𝑓 (𝑋 ) = 0 indicates non-speech. Once a time frame is identified as likely speech (i.e., 𝑓 (𝑋 ) = 1), that particular

time frame is discarded.

In Kirigami, we use a Logistic Regression (LR) model for real-time speech detection. Logistic Regression is a

well-established shallow ML model typically used for binary classification tasks and is also resource-efficient. To

build an LR model, we first normalize the STFT features using the L-1 norm across all frequency components for

each time frame. The normalization step ensures that the influences of volume variation from the audio signal

are reduced.

Thus we formally represent the Logistic Regression model used for binary speech detection as follows:

𝑔(𝑋 ) = 𝜎 (𝑊 · 𝑋

| |𝑋 | |1
+ 𝛽0) (1)

, where | |𝑋 | |1 =
∑𝑑

𝑖=1 |𝑥𝑖 | is the L-1 norm of 𝑋 ,𝑊 and 𝛽0 are the weight coefficients and intercept learned from

the training data, and 𝜎 is the logit function:

𝜎 (𝑧) = 1

1 + 𝑒−𝑧
(2)
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The decision 𝑓 (𝑋 ) of whether a time frame should be removed is based on comparing the model prediction

against a threshold value 𝜏 , which can be represented as:

𝑓 (𝑋 ) =
{
1 if 𝑔(𝑋 ) ≥ 𝜏

0 if 𝑔(𝑋 ) < 𝜏
(3)

In our training process, the LR model was developed using the TIMIT [15] dataset for speech data and the

ESC50 [34] environmental sound dataset for non-speech data. We opted for the TIMIT dataset for speech data due

to its inclusion of multiple hours of phonetically transcribed sentences, enabling in-depth analysis and modeling

of speech sounds. Additionally, we opted for the ESC50 dataset for non-speech data, aligning with our objective

of recognizing events and activities. The sound samples from ESC50 provide valuable training data for the LR

model to effectively distinguish and preserve sounds associated with various activities. To enhance the diversity

of our dataset, we created an additional speech dataset where we overlay sounds from ESC50 on top of the TIMIT

speech audio. This augmentation aims to enrich the training data, enabling the LR model to better generalize

and perform effectively across a range of real-world scenarios. We apply STFT to the audio samples from these

sources to transform them into the frequency domain (FFTs). Subsequently, we label each time frame as positive

(i.e., speech) or negative (i.e., non-speech) depending on the source. We balanced the dataset to have an equal

number of speech and non-speech samples. In total, our dataset comprises 20000 samples, which are randomly

split into three subsets: 80% for training, 10% for validation, and 10% for testing. Through supervised training,

the LR model learns to classify each time frame as speech or non-speech, thereby removing the time frames

that are likely speech. Overall, our Kirigami LR model (using 𝜏 = 0.5) achieved a speech recognition accuracy of

76.44%, indicating the effectiveness of our method in accurately identifying and classifying speech segments. It’s

important to note that we are not aiming for perfect classification accuracy, and our goal was to make the model

configurable to balance privacy or utility requirements, depending on the use case. This adaptability allows for a

nuanced and tailored approach, where the balance between accuracy and the desired outcome can be fine-tuned

to align with the overarching goals of the application or system. We elaborate further in Section 5.2 on how the

Kirigami LR model can offer sufficient privacy protection with appropriate threshold values while preserving

adequate utility value.

5.2 Configuring Privacy vs. Utility Tradeoffs
Figure 6 provides an illustration of the trade-off between privacy and utility as we configure the Kirigami filter

to have different values for 𝜏 . In the figure, the first part contains pure speech (𝑡 = 0𝑠 to 𝑡 = 1.86𝑠), speech data

overlaid with a vacuum cleaner sound (𝑡 = 1.86𝑠 to 𝑡 = 3.72𝑠), and a vacuum cleaner sound (𝑡 = 3.72𝑠 to 𝑡 = 5.6𝑠).

The value of the threshold 𝜏 , configurable to be between 0 and 1, plays a crucial role in determining the model’s

inclination towards either preserving privacy or maintaining utility. A value closer to 0.5 leans toward balancing

both. Given that the Kirigami filter is an ML model, there are instances where it is incorrect, which leads to either

some speech data being leaked or some audio event data being filtered. For example, for the LR0.5 configuration,

some frames with the word “quick” are mistakenly classified as non-speech (a false-negative). As the threshold

changes from 0.5 to 0.1, the model becomes more conservative and prioritizes privacy protection. For example, for

the LR0.1 configuration, all the segments with the word “quick” are now detected correctly as speech, but towards

the end, numerous segments with the vacuum cleaner sound alone are incorrectly filtered out as speech (false

positives), which can affect the utility of activity detection. The optimal threshold depends on the specific use

case and the application requirement. In situations where privacy is crucial, such as if the sensor is installed in a

private office, a lower threshold would be more suitable. Conversely, in less sensitive contexts (e.g., shared spaces)

or where the accuracy of activity detection is more important (HAR for fall detection scenario), a threshold closer
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Fig. 6. Illustration of Kirigami’s Logistic Regression model for phoneme prediction. The LR Pred line graph shows the
predictions from 0 to 1, while LR0.5 to LR0.1 shows predictions at threshold values indicating speech (1) or non-speech (0).
Spectrograms showcase original and filtered audio, demonstrating a balance between privacy (speech filtering) and utility
(activity recognition).

to 0.5 may be more appropriate. We further quantify the impact of different thresholds on privacy vs utility and

discuss its implications as compared to various prior approaches in Section 6.3 and 6.4.

5.3 Kirigami Speech Filter on the Edge
A key goal in developing the Kirigami filter was to ensure its feasibility of deployment on edge, which typically

implies operating in resource-constrained environments. For instance, popular ARM Cortex M class microcon-

trollers commonly found in IoT devices have around 128KB RAM 100-150MHz CPUs, and thus cannot run deep

learning-based ASR models such as Whisper to filter speech. With all its configurable threshold parameters, this

meant that the Kirigami filter needed to be implemented in environments with frugal memory resources and

limited computing capabilities.

We quantized the Kirigami LR model to reduce its memory footprint, ensuring more efficient storage and

processing on resource-constrained devices. This involved converting the model’s floating-point parameters to

integers, a process that conserves memory and contributes to improved computational efficiency. Overall, our
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Fig. 7. Flowchart depicts the adaptive background masking process in conjunction with Kirigami’s speech filter. The process
involves background detection, buffer comparison, heuristic calculation, and the generation of a background mask to filter
out background frequencies. The resulting background-filtered FFT enhances Kirigami’s speech filter for improved accuracy
by eliminating background noise.

Kirigami approach requires the storage of 129 weight values, including the intercept, and the computation of one

normalization, one dot product, and one logit function. We implemented the Kirigami LR model on the popular

edge microcontroller ARM Cortex-M4F with 256 KB RAM and 1 MB flash and measured the memory consumption

and latency. Our measured memory footprint of the quantized Kirigami model coefficients was 518 bytes (< 1 KB)

and a total of 2.1 KB (< 3 KB) for the entire Kirigami filter, including the model intermediate weight calculations.

The end-to-end latency for prediction of an FFT sample is approximately 0.71 ms, demonstrating that the Kirigami

filter is not only resource-efficient in terms of memory consumption but also exhibits low latency, making it

well-suited for deployment in real-time applications on edge devices with limited computational resources. We

implemented the Kirigami LR model in both C and Python to ensure comprehensive compatibility of the Kirigami

filter across different device environments and run efficiently on devices with limited computational power and

memory. We further evaluate the real-world accuracy performance of our edge Kirigami filter in Section 6.6.

5.4 Adapting the Kirigami Speech Filter for Real-World Environments
A key design goal of the Kirigami filter is to robustly filter out speech in real-world environments. Our initial

hypothesis to achieve this was to train the Kirigami filter on a custom dataset where activities of interest are

overlaid with speech events. We formed this dataset by augmenting environmental sounds from ESC50 dataset

of activities and ambient sound with the TIMIT speech audio, using this dataset to train the Kirigami model.

This approach allowed us to simulate real-world conditions where people speak with other activities and events

happening in the background. The Kirigami speech filter, while effective in controlled environments, faced several

challenges in these real-world situations, primarily due to the presence of background noise, diverse acoustic

landscapes, and variability in ambient noise levels.

Thus, we aimed to identify background or ambient sounds in the environment and filter those out before

identifying and filtering speech events. However, real-world environments exhibit a dynamic spectrum of ambient

noise, with levels that fluctuate based on factors such as location, time of day, and environmental conditions. For

example, workshop environments may feature machinery traffic sounds, while quieter office spaces may still
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have variable noise from air conditioners, HVAC, or occasional people chatting in the surroundings. Moreover,

background noises, which may be constant or intermittent, span a wide spectrum of frequencies and intensities.

To overcome these challenges, we present an adaptive background masking process combined with Kirigami’s

speech filter. We continuously collect background noise profiles from the environment, estimate a mask for these

background noises, and apply this mask to filter out the noise. As shown in figure 7, our approach consists of

the following steps: (1) background identification, (2) creating a background mask buffer, and (3) background

mask generation and filtering. Once the noise is filtered, the data is sent to our Kirigami LR model for speech

filtering. The background identification step uses a Logistic Regression model to predict whether the input

FFT represents background noise versus foreground speech or activity of interest. This model is trained on

datasets containing a mixture of background noises of typical environments from Microsoft Scalable Noisy

Speech Dataset (MS-SNSD) [38] and foreground activities and speech from TIMIT [15] and ESC-50 [34]. We

attempted to further increase the real-world fidelity of noise mixtures by overlaying the foreground speech

and activities with background noise at various signal-to-noise ratios and various pitches of background noises.

Second, these predicted FFT data are added to the background noise mask buffer, which maintains multiple buffers

of continuous background FFT data. This buffer imposes conditions on the temporal continuity of background FFT

samples, ensuring that the FFT frames within the buffer are contiguous. Once multiple of these buffers are filled

up, the similarity across different buffers is gauged using the Euclidean distance metric If the buffers are similar,

the process generates a background mask. This process ensures the reliability and accuracy of the captured

background profile, enabling adaptation to diverse environmental settings. The background mask generation

process relies on a method called spectral gating [22]. This technique involves estimating a background threshold

(or gate) for each frequency band within the collected background profile, calculated using the mean and standard

deviation over frequency. This threshold is then used to compute a mask, which gates noise below the frequency-

varying threshold. During the background masking phase, we initiate the process by establishing a gain control

for each frequency band. If a frequency surpasses the previously determined threshold, the gain is set to 0 dB;

otherwise, the gain is reduced (e.g., to -18 dB) to mitigate background noise. Following this, we use frequency

smoothing to ensure that individual frequencies are neither excessively suppressed nor boosted in isolation. We

then direct the background-masked FFT to the Kirigami speech filter, which is now potentially less susceptible

to the influence of background noise. By incorporating an adaptive algorithm that responds to fluctuations in

ambient noise, we enhance the Kirigami filter’s versatility in handling variable acoustic environments, ensuring

reliable speech recognition performance across diverse real-world scenarios. We evaluate the robustness of our

approach in the real world in Section 6.6.

6 EVALUATION
This section evaluates the effectiveness of state-of-the-art speech recognition systems in recovering speech text

from the prior privacy-focused featurization approaches. In addition, we evaluate Kirigami’s ability to identify

phonemes from audio data. Overall, our evaluation aims to answer the following questions:

• RQ1: How accurately do modern ASR-based systems identify speech contents from audio featurized using

prior approaches?

• RQ2: How robust is Kirigami ’s filter to ASR-based attacks, and how does Kirigami’s filtering approach

affect the utility?

• RQ3: How accurately does Kirigami’s filter perform in real-world environments?

6.1 Evaluation Setup
Dataset:We utilize the TIMIT [15] dataset to evaluate the feasibility of inferring speech from featurized data,

fine-tuning the ASR-based models, and building the Kirigami filter. The TIMIT dataset contains a total of 5 hours
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of English speech with 4,620 phonetically transcribed sentences, with approximately ten sentences per speaker.

Each sentence is segmented into phonetic units, such as phonemes and words, allowing for detailed analysis and

modeling of speech sounds. To evaluate the utility of Kirigami filter and the prior filtering approaches, we use the

ESC-50 [34] dataset. The dataset contains 2000 environmental sound recordings from 50 classes involving various

sound types, including animal sounds, natural sounds, human non-speech sounds, etc. To match the scope and

difficulty of the application scenarios in prior audio privacy filtering approaches, we selected ten classes: toilet

flush, sneezing, clapping, breathing, coughing, footsteps, laughing, brushing teeth, snoring, drinking, door knock,

washing machine, vacuum cleaner, clock alarm, and clock tick. Finally, we also created an overlay of the TIMIT

dataset with the ESC-50 dataset to evaluate privacy and utility performance in a noisy environment. For speech

inference evaluation, the overlaid data is produced by overlaying a random sound file from ESC-50 on top of

each speech audio file from TIMIT. The resulting audio file contains the same speech content and length as the

original. Similarly, for utility evaluation, we overlaid a random speech audio file from TIMIT on each sound file

from ESC-50. We match the loudness of two different audio files based on the loudness level in decibels relative

to full scale (dBFS).

Speech Inference Evaluation: To examine the extent to which modern ASR models can infer speech content

information from prior audio privacy filter approaches, we implemented each privacy filter approach and

evaluated the speech inference performance. The approaches that we included in our evaluation are CoughSense

[26], Synthetic Sensors [25], PrivacyMic [27], and SAMoSA [29] as all these works indicate privacy as a primary

factor in their filter design process. We applied each of these privacy filter approaches to obtain a dataset of

filtered audio samples. We used four different configurations of ASR models: CRDNN, Wav2VecTransducer,

Whisper Pre-Trained, and Whisper Fine-Tuned. The training set of filtered audio samples is used to fine-tune the

model weights, which facilitates the ASR model to adapt to filtered audio samples and learn suitable new feature

extraction and prediction mechanisms. The models are trained to start from existing checkpoints for optimal

speech inference performance.

Privacy PerformanceMeasures: The performance of speech inference is measured in Phoneme Error Rate (PER)

and Word Error Rate (WER). PER and WER are defined as the number of insertions, deletions, and substitutions

normalized by the length of the target sentence. PER measures the number of incorrect phoneme predictions

produced by the ASR model, while WER measures the rate at which words are predicted incorrectly. The

evaluation of speech inference measured in PER and WER is conducted on both TIMIT as the pure speech dataset

and overlaid dataset, although we adopt the PER and WER on pure speech data as the primary measure of privacy

protection.

Utility Performance Measures: Utility, often emerging as an opposing goal to privacy, also needs to be assessed

to understand the effectiveness of a privacy filter. An effective filter ideally shall achieve high PER and WER

while having minimal loss in the utility performance compared to non-filtered audio. We adopted the Audio

Spectrogram Transformer (AST) [16], a state-of-the-art audio classifier and one of the best performers on the

ESC50 dataset, to evaluate the accuracy of inferences as the utility performance. We used a 5-fold cross-validation

standard to the ESC50 dataset and calculated the classification accuracy of the 10 classes selected from the ESC50

dataset on, both, the pure environmental sound and the sound overlaid with speech. Unlike speech inference

where the privacy leakage on pure speech is the primary concern, the classification accuracy on both pure and

noisy data is crucial for consistent performance across different environmental conditions. Taking all these

measures together allows us to assess the trade-off between privacy protection and utility preservation for each

filtering approach.
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Fig. 8. Results of (a) phoneme-based speech inference, (b) word-based speech inference, and (c) activity classification accuracy
on prior filtering approaches.

6.2 RQ1: Feasibility of Speech Inference from Prior Speech Filtering Approaches
We fine-tune the ASR models by applying each audio featurization approach to the training set of the TIMIT

dataset. The ASR models learn to infer speech from these featurized audio samples through fine-tuning. Finally,

the performance of speech inference from all ASR models is evaluated using the PER and WER metrics on the

pure speech Timit dataset and Timit speech data overlaid ESC-50 activity data.

Phoneme-based Speech Inference: Fig. 8(a) summarized the experiment results of speech inference on featur-

ized audio data using four prior approaches to audio speech filtering using the CRDNN and Wav2VecTransducer

models. Overall, these results demonstrated a concerning level of privacy risks in audio privacy filtering tech-

niques. CoughSense [26], Synthetic Sensors [25], and PrivacyMic [27] showed PER of 27.14%, 39.05%, and 26.70%

respectively on pure speech sounds, proving the feasibility in inferring phonemes from the filtered speech data.

Wav2VecTransducer outperforms CRDNN in inferring phonemes on these three approaches except on SAMoSA.

SAMoSA [29], with simple downsampling and a large FFT window size approach, exhibits adequate protection on

speech. We conjectured that this protection might be due to the length of FFT windows measured in time (600ms)

far exceeding the time to speak a phoneme in most cases. To help assess the audio filtering effectiveness in

comparison to complete audio data, we included our baseline approaches using FFT data from 256/128 windows

and step sizes without any filtering, achieved PER of 16.28% and 10.12% using CRDNN and Wav2VecTransducer

models, respectively. In Figure 8 (a) and (b), this baseline is shown as dashed lines.

Word-based Speech Inference: We also compare the Word Error Rates (WER) of the prior audio filtering

techniques using fine-tuned and pre-trained Whisper models to assess the efficacy of the word-based speech

inference models. Figure 8(b) shows the WER of fine-tuned whisper for prior filter approaches. CoughSense,

Synthetic Sensors, PrivacyMic, and SAMoSA, showed WER of 29.31%, 32.10%, 48.21%, and 68.11%, respectively,

on pure speech sounds showing that fine-tuned whisper models can recognize speech content even after the data

is filtered by the prior approaches. In addition, we also see that using an off-the-shelf pre-trained Whisper model

has higher WER, which means the prior filter approaches are still resilient to the pre-trained Whisper model.

The weakest filter among the four is CoughSense [26] as it has the lower WER scores (29.31%), meaning the

inference obtained from the fine-tuned model provides enough information about the original speech content. As
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Fig. 9. Results of (a) phoneme-based speech inference, (b) word-based speech inference, and (c) activity classification accuracy
on Kirigami filtering approaches.

a point of comparison, our baseline approaches using FFT data with 256/128 windows and step sizes without any

filtering yielded WER of 3.01% and 6.78% with fine-tuned and pre-trained Whisper models, respectively. Overall,

these results demonstrate the potential of fine-tuning the ASR model to effectively infer speech content from

filtered audio, highlighting its capability to overcome the prior speech filter approaches and provide accurate

word-based speech recognition.

6.2.1 Utility Impact: Figure 8(c) shows the audio classification accuracy on 10 activity classes on the ESC50

dataset [34] over the four prior approaches. The baseline configuration (no filter) achieved 95.25% and 86.25%. Out

of the four prior approaches, the best performer is SAMoSA [29], which achieved 79.50% accuracy in classifying

pure activity sounds. The classification performance for the other three approaches is significantly lower than the

baseline configuration. Notably, all four approaches showed significant performance drops on overlaid sounds. We

hypothesized that this performance drop might be caused by the always-on manner of these filtering approaches,

which degrades the expressivity of the audio data and makes activity and speech sound less distinguishable when

overlayed. The drop is especially pronounced for SAMOSA (a drop of 46.25%). We posit this drop to SAMOSA’s

very low default sampling rate (1 kHz). This approach works well when the signal is clean, but the performance

plummets significantly when the speech and ambient sounds are overlaid.

6.3 RQ2 : Performance of Kirigami filters
Fig. 9 summarizes the performance of the Kirigami filter with different configurations of threshold values. Overall,

Kirigami filters showed superior protection for speech privacy compared to the prior approaches, especially for

configurations that lean towards privacy, such as LR0.1 and LR0.2.

Phoneme-based Speech Inference: As shown in Fig 9 (a), the CRDNN model produces almost complete noise,

with PER values above 100%, for any of the 5 Kirigami filter configurations. For the Wav2VecTransducer model, as

the threshold value moves from 0.5 to 0.1, the difficulty of inferring phonemes, as measured by the PER produced

by the Wav2VecTransducer model, increased as expected.

Word-based Speech Inference:We also see similar trends in word-based models (Fig. 9 (b)). When the Kirigami

filters are applied to the Whisper pre-trained models, we see that they have a higher WER score of more than
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90%. For fine-tuned models, LR0.3, LR0.2, and LR0.1 all achieved above 80% WER. In addition, we see that as we

change the threshold configuration of Kirigami from being privacy-preserving (threshold = 0.1) to providing

higher utility (threshold = 0.5), the WER values decrease from 89.48% to 68.72% for fine-tuned whisper model.

Even the lowest WER 68.72%, which is produced by LR0.5 that leans more towards utility, is already higher than

the WER for SAMoSA [29], the best-performing privacy filtering technique out of the four prior filters.

Utility Impact: Out of the five configurations, LR0.5 achieved the best classification accuracy at 82.00% for

pure activity sounds and 70.50% for overlaid sounds, which also outperforms all 4 prior filtering approaches

that we evaluated. As the Kirigami filter is configured to be more privacy-sensitive, the classification accuracy

slightly drops. Even at LR0.2, the accuracy for both pure and overlaid sounds is still above 60%. Another notable

difference from prior approaches is that for all Kirigami filters, the negative impacts from overlaid sound are very

moderate, at most 11.50% for LR0.5. This advantage of Kirigami, as we hypothesized, is because Kirigami keeps

the complete FFT values at the pauses of speech in the overlaid sound, which provides adequate information

for the activity recognition. This highlights another advantage of Kirigami filters as to not only protect speech

privacy but also maintain utility value even when activities are performed when speech is present.

6.4 PER v.s WER Contextualization
While Phoneme Error Rate (PER) and Word Error Rate (WER) are widely used in speech recognition literature,

it is difficult to contextualize their privacy implications. For instance, one could ask at what level of PER or

WER is an audio featurization technique safe or risky. In addition, it remains a question of what information

can be inferred at different PER and WER values. To understand the practical implications of speech inference,

we conducted a IRB-approved user study to contextualize how much information can users decipher from the

inferred phonemes and words.

Questionnaire Design:We randomly selected ten sentences from the TIMIT dataset [15] that independently

convey a complete meaning. For instance, the sentence pizzerias are convenient for quick lunch conveys a statement

about pizzerias and lunch. Each sentence was subjected to speech inference predictions through various privacy

filters, and the PER and WER were measured for each. For each one of the ten selected sentences, we randomly

picked five different predictions that fall into five ranges of PER or WER values. Using these sentences, we

created a pool of 50 scenarios, half of which are phoneme-based speech inferences, and the other half are from

word-based models. In each scenario, we ask the participants five questions, including transcribing the sentence,

identifying words from the original audio, choosing the most likely speech topic, choosing the most likely speech

content, and rating the similarity of the prediction to the original sentence. In phoneme scenarios, we presented

the segmented phonemes (e.g., p-iy-ch-er-r-iy-z ih-k-n-v-iy-n y-ih f-aa-r-ah k-w-ih-l-aa ch), spelling prediction
(e.g., peceruries enchant ye fara Quilla ch), as well as a reference phoneme pronunciation table. For word model

predictions, we only show the sentence prediction (e.g., combine play them grams a large bowl).
Study Procedure: In total, we recruited 10 participants (seven females and three males) from the university

with an average age of 24.7, ranging between 22 and 28 years. Out of the ten participants, two participants

self-identified themselves as having linguistic backgrounds. Before the study began, we introduced participants

to phonemes and speech inferences. Then, we went over two example scenarios, one from a phoneme model

and the other from a word model. We guided participants through the process of answering five questions for

the phoneme scenario and five questions for the word scenario. We demonstrated how to transcribe the words

and infer speech content based on the phonemes and word predictions that contain errors, as well as addressed

any confusion that participants may have had regarding our study. Once the study began, each participant was

randomly assigned ten scenarios, one for each sentence. The ten scenarios that a participant answers all have

distinct PER and WER ranges.
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Fig. 10. Results of user transcribing sentence (a), recognizing words (b), and inferring speech topic (c) at various PER from
ASR models

Study Results:We summarized the results of the user study in Fig. 10 and 11. Figure 10 suggests a steady increase

in the difficulty of recognizing words from phonemes as PER increases. Participants, on average, recognize around

40% of the words when phoneme prediction PER is around 10 ∼ 20%. The majority of participants (50 ∼ 80%)

are able to infer the topic of the sentence from its phoneme prediction until 60% PER, especially when the user

has some prior knowledge of the context or has relevant options shown to them. Although on 80% PER, 40% of

participants selected the correct topic, we believe the participants answered the topics correctly by chance after

we manually examined the questions and phoneme predictions that these participants received. Therefore, we

consider 60% as a suggested threshold of PER, above which minimal information can be obtained from the model

inference. For WER, the difficulty in transcribing and recogizing words increases as WER increases. Figure 11

shows sharp turning point at 80∼100%, after which it becomes very challenging for participants to recognize any

words or topics. Therefore, we suggest an 80% WER threshold as the point at which the model inference can

provide only limited information. However, it is recommended to consider both PER and WER together for better

privacy assurance. This study provides useful insights into the performance evaluation of ASR systems and can

guide future research in this field.

6.5 Comparison of Kirigami and Prior Speech Filtering Approaches
Figures 12 (a) and (b) show the comparison of the privacy and utility tradeoffs of prior and Kirigami speech-

filtering approaches based on two benchmark datasets, pure Timit speech data for speech inference (to assess

privacy risks), ESC50 activity recognition dataset (to assess utility benefits for activity recognition) and Timit

speech overlaid on ESC50 dataset (to assess utility benefits for activity recognition in noisy data) for phoneme

and word based ASR models. Using the scatter plot we can assess the effectiveness of the prior approaches and

the Kirigami filters in preserving privacy while preserving the utility for activity recognition. In the scatter

plot, the x-axis represents the level of privacy achieved by each approach, with greater distances from the

base indicating higher privacy protection. The y-axis represents the level of utility achieved, indicating the

effectiveness or performance of the activity recognition tasks. The privacy metrics PER and WER values for the

filtering approaches, picking the lowest PER values and lowest WER values (most privacy-invasive) among the

ASR models. Based on user study results, a threshold of 60% for PER and 80% for WER is established as the point
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Fig. 11. Results of user transcribing sentence (a), recognizing words (b), and inferring speech topic (c) at various WER from
ASR models

60 80

safe zone safe zone

Fig. 12. Scatter Plot of Privacy and Utility Trade-Off of Different Audio Featurization Techniques. The vertical dashed lines
represent the drop in accuracy for the utility measure in the presence of simultaneous speech and ambient sounds (overlaid
sounds). Informed by our user study, we consider regions more than 60% PER and 80%WER as safe zones as little information
from speech can be inferred. The ideal region is the top-right corner as it maximizes error in reproducing the spoken content
and accuracy for the end goal task. For both plots, several Kirigami configurations are near that corner. In (a), SAMoSA [29]
is close to the corner too, but the drop off in utility due to the presence of overlaid sounds is substantial. In comparison,
Kirigami filters are more immune to noisy environments.

at which the filtering approach is deemed safe. The utility metric is picked based on this high accuracy achieved

after the filtering technique using the ESC50 dataset. Ideally, the desired positioning of the filtering approaches

on the scatter plot is in the top right quadrant. This indicates achieving the highest utility while simultaneously

providing the highest privacy guarantees.
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Figure 12(a) shows the most privacy-preserving filter for phoneme-based ASR models is the Kirigami’s LR 0.2,

while the least privacy-preserving filter apart from the baseline (WS256, WS400) is CoughSense [26] and Synthetic

sensors [25]. While other approaches, such as SAMoSA [29], have high utility accuracy(76%) for pure ESC50

dataset, and their approach is in the PER safe zone, their utility accuracy (26%) drops for activity recognition when

noise data is present (Timit speech overlay on ESC50). Based on this, the most ideal approach is Kirigami’s LR 0.2

primarily due to higher PER numbers and better utility accuracy for both pure ESC 50 and Timit speech overlay

on ESC50 datasets. Figure 12(b) shows the most privacy-preserving filter word-based ASR models have both

Kirigami’s LR 0.2 and Kirigami’s LR 0.1, least privacy-preserving is CoughSense [26]. We also see that most of the

prior speech-filtering approaches are in the unsafe zone, including SAMoSA and PrivacyMic, indicating that these

approaches are ineffective in preserving privacy. Considering both privacy and utility aspects, Kirigami’s LR

0.2 filter emerges as the most suitable choice due to its higher PER numbers and better utility accuracy for both

the pure ESC50 and Timit speech overlay on ESC50 datasets. It strikes a balance between privacy preservation

and utility enhancement. Our Kirigami’s LR 0.2 filter offers a compelling solution, providing a high level of

privacy preservation while maintaining satisfactory utility accuracy. However, as we delve into the extensive

real-world study, the story takes an unexpected turn. Contrary to our initial expectations, the effectiveness of the

Kirigami’s LR 0.2 filter, while effective in controlled environments, was significantly impacted by the presence

of real dynamic background noise, diverse acoustic landscapes, and fluctuations in ambient noise levels. To

overcome this, we present an adaptive background masking process combined with Kirigami’s speech filter as

mentioned in Section 5.4 and evaluate Kirigami’s effectiveness in discarding speech.

6.6 RQ3: Evaluation of Kirigami filter in the Real World
We conducted a user study to evaluate the robustness of our Kirigami filters for speech recognition in real-world

environments beyond using audio datasets. In addition, we evaluate speech recognition accuracy in different

locations with varying background noises and characterize the Kirigami filter’s performance.

Scenarios Definition:We define three scenarios to characterize distinct speech and activity patterns in real-

world settings. In scenario 1, to showcase the Kirigami’s robustness to the duration of speech, participants are

given a script containing randomly selected short and longer-duration sentences from the TIMIT dataset [15],

each independently conveying complete meanings. They are asked to speak three short sentences, averaging 15

to 20 seconds each, and three longer sentences, taking approximately 1 minute, repeating each sentence three

times. In scenario 2, participants are tasked with speaking short sentences at varying distances (1, 2, and 3 feet)

from the source microphone. In Scenario 3, evaluating Kirigami’s utility preservation, participants engage in

diverse activities, including sporadic actions like clapping or typing, continuous actions like vacuum running,

and human voice-based activities such as coughing or laughing. Each of these scenarios is repeated in three

locations: a lab, a makerspace, and a conference room. We chose these locations to include a diverse range of

background noise profiles.

Study Procedure: For this study, we recruited 7 participants (4 Females, 3 Males) ranging from 22 to 28 years

old (Average = 24.7 years). We capture audio data from two input sources:(1) raw audio data from the Laptop

(Macbook) microphone and (2) featurized FFT data from a microphone connected to a microcontroller (ARM

Cortex-M4F with 256 KB RAM and 1 MB flash). Each participant is provided with a script and a set of sentences. To

emulate a real-world setting, we only put constraints on the entire scenario’s speech start and end time. However,

participants can speak the sentences in any manner they see fit. For each scenario, we evaluate Kirigami’s LR

filter with and without a background mask, denoted as Kirigami w/ BM and Kirigami w/o BM and calculate speech

and activity recognition accuracy.

Study Metrics: To measure the real-world performance of Kirigami filters to detect speech in the real world

accurately, we use recall – percentage of speech removed when speech happens and specificity – percentage
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Fig. 13. Comparing the performance of Kirigami LR filter with and without background mask from Microcontroller and
Laptop. The figure shows the percentage of (a) speech-filtered and (b) activity data retained and overall activity recognition
accuracy.

data available for utility-based models. We selected these two metrics due to their ability to evaluate filter

performance independent of the composition ratio between speech and non-speech durations in real-world

scenarios. Depending on the application, the ratio of speech and non-speech data can be different from the ratio

in our user study or dataset. For this reason, using accuracy as the metric in our case would be strongly affected

by the composition ratio of speech in our user study and might not be an informative indicator of real-world

performance. To measure the activity recognition performance, similar to before, we use an AST-based model and

calculate the classification accuracy in the real world. We further fine-tuned the global model by taking partial

activity data as training samples from the user study to show an increase in classification accuracy.

Overall User Study Results: Figure 13 shows the performance comparison between the Kirigami filter with

and without the background mask when the filter runs on a Microcontroller or Laptop. This result was obtained

after the study was conducted among diverse participants and conducted in different locations in the building

(L1, L2, L3) with varying background noise.

In Figure 13 (a), we see that the Kirigami filter with the background mask (BM) consistently outperforms its

counterpart without BM, both on micro-controller and laptop platforms. The filtered speech data percentage

is notably higher with BM (Micro: 74.31%, Laptop: 71.02%) compared to without BM (Micro: 22.89%, Laptop:

58.30%). Similarly, the presence of BM results in a greater retention of activity data (Micro: 40.25%, Laptop: 57.50%)

compared to without BM (Micro: 34.64%, Laptop: 37.85%), as depicted in Figure 13 (b). This observation suggests

that the speech recognition performance of the Kirigami LR without BM is significantly impacted by the diverse

array of background noises present in real-world scenarios. Furthermore, our analysis indicates that Kirigami

with BM achieves higher activity recognition scores, particularly for the laptop (without fine-tuning: 60.32%,

with in-situ fine-tuning: 80.15%), surpassing the scores obtained without BM (without fine-tuning: 48.41%, with

in-situ fine-tuning: 60.32%). A similar trend is observed for the microcontroller, where Kirigami with BM (without

fine-tuning: 28.97%, with in-situ fine-tuning: 72.22%) consistently outperforms Kirigami without BM (without

fine-tuning: 26.19%, with in-situ fine-tuning: 48.41%). In summary, our findings demonstrate the consistent

and robust performance of the Kirigami filter with the background mask in speech filtering across diverse
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Fig. 14. Comparing the performance of Kirigami LR filter on Laptop with and without background mask at various locations:
L1-Lab, L2-Makerspace, L3-Conference Room.

environments. In contrast, the Kirigami filter without the background mask experiences significant performance

variations.

Evaluating Kirigami’s Performance Across Different Environments: To examine the resiliency of Kirigami

LR filter to various background profiles in real-world scenarios, we conducted the user study in three distinct

locations characterized by diverse background settings in our campus building. Location L1 represented a

laboratory setting, a shared space with multiple individuals, featuring a moderate-level background noise

generated by continuous HVAC running and occasional conversations in the surroundings. Location L2, a maker

space, exhibited a background profile dominated by low-frequency noise from machinery. In contrast, Location

L3, a conference room with an open window, presented an external noise profile, including vehicle honks and

birds chirping. Location L3 was the noisiest background environment, while L2 was deemed the least noisiest.

Figure 14 shows the comparison of Kirigami filter performance with and without BM in different locations. In

general, the Kirigami filter without BM exhibits less accurate speech removal and demonstrates inconsistency

across diverse locations. For instance, in location L1, a laboratory environment, the percentage of filtered speech

decreases to 33.86% without BM, while the Kirigami filter with BM removes 66.43% of speech data. But in location

L2, which is the quieter environment, we see that both Kirigami filter with and w/o filters filter have comparable

speech percentage filtered showcasing Kirigami w/o BM performance changes in different locations. However, in

comparison, Kirigami w/ BM speech filtering accuracy is consistent in different locations (L1: 66.43%, L2: 75.99%,

and L3: 70.66%) while ensuring the utility of the data preserved is also high across different locations.

Evaluating Speech Inference and Activity Recognition using Kirigami with BM:Speech inference

models often experience a decline in recognition accuracy when operating in noisy environments. Similarly,

Kirigami filters, operating in a detect-and-remove manner, might also have to face challenges in filtering out

speech in noisy environments. Therefore, we conducted empirical tests to confirm that Kirigami w/ BM maintains

its robustness under ASR models when exposed to a noisy dataset. This investigation aims to assess the net

impact of noisy data on speech inference and activity recognition.

In this evaluation, we use the TIMIT dataset and the same 10 classes ESC50 and various background envi-

ronmental noises (TIMIT + Background) and (ESC50 + Background)/ The constructed dataset retains the same
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Kirigami: Lightweight Speech Filtering for Privacy-Preserving Activity Recognition using Audio • 36:25

FFT
WS256

Kirigami
w/o BM

Kirigami
w/ BM

0

20

40

60

80

100

PER

10.12

66.79

78.09

14.50

56.23

75.94

TIMIT TIMIT + Background

(a) Phoneme Error Rate (PER)

FFT
WS256

Kirigami
w/o BM

Kirigami
w/ BM

0

20

40

60

80

100

WER

3.01

84.83
90.76

7.68

88.83
94.63

TIMIT TIMIT + Background

(b) Word Error Rate (WER)

FFT
WS256

Kirigami
w/o BM

Kirigami
w/ BM

0

20

40

60

80

100

ACC

95.25

71.25

84.0081.75

49.50

68.00

ESC50 ESC50 + Background

(c) Classification Accuracy

Fig. 15. Results of (a) phoneme-based speech inference, (b) word-based speech inference, and (c) activity classification
accuracy on prior filtering approaches on the clean and noisy dataset.

structure as the original TIMIT and ESC50 datasets, except various background noises are overlaid. As before, we

fine-tuned the CRDNN model, Wav2VecTransducer, and Whisper AI models to infer speech after filtering using

Kirigami w/o BM and Kirigami w/ BM. We fine-tuned AST models for activity recognition using the filtered audio.

In addition, we include the baseline model using an FFT of 256/128 windows and step sizes, without Kirigami

filters, to gauge the impact of background noise on the ASR model alone.

Fig. 15 summarizes the performance of the Kirigami filter with and without BM under clean and noisy audio

data. We include the summary of evaluation results for space limitation from only the strongest performers:

Wav2VecTransducer and Fine-Tuned Whisper AI models. Overall, Kirigami w/ BM showed superior protection for

speech privacy and preserved more utility values for activity recognition models than Kirigami w/o BM. As seen

in Fig. 15 (a) and (b), Kirigami w/ BM remain high PER and WER across clean and noisy datasets, demonstrating

its reliable privacy protection under noisy environments, while Kirigami w/o BM suffers from a degradation

in PER. As seen in Fig. 15 (c) showed that Kirigami w/ BM outperforms Kirigami w/o BM on both the original

ESC50 and noisy datasets. The superior performance of Kirigami w/ BM, even for the clean case, is possibly due

to its capability to suppress intrinsic background noise in the original ESC50 dataset.

7 DISCUSSION AND LIMITATIONS

Evaluation or Privacy Filtering Models: Replicating and testing each proposed technique individually is

time-consuming and expensive in terms of cloud computing credits needed, especially with model re-tuning or

re-training. To address this, we carefully selected at least one prior work representing each type of privacy filtering

that we identified. While this selection provides valuable insights into the performance of different filtering

approaches, it may not encompass the entire spectrum of privacy filtering techniques available. Future research

could explore a broader range of filtering techniques to gain an even more comprehensive understanding of their

effectiveness and trade-offs. We believe that Kirigami’s edge filtering approach to detect and filter speech-like

segments will still remain superior to other approaches in terms of privacy.

Alternative ML Model for Filtering: We focused on using LR as the primary ML model used by our Kirigami

filter rather than exploring other alternatives. While our results show that our LR-based Kirigami filter is quite
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effective, other ML models specifically designed for edge devices, such as TinyML or lightweight recurrent neural

network (RNN) models, could offer additional benefits and trade-offs. Our goal was to use a resource-frugal

shallow model that could run on a wide range of IoT devices, but we leave the investigation of these alternative

ML models as a future exploration.

User Study Validity:We acknowledge the smaller size of our participant pool for the user study as a limitation.A

larger and more diverse sample size would further enhance the validity and generalizability of the study results.

A larger sample would also provide a broader representation of user preferences, behaviors, and perceptions,

leading to more robust conclusions.

Additional Metrics for Speech Privacy: Our study highlights an important consideration regarding the use

of Phoneme Error Rate (PER) and Word Error Rate (WER) as metrics for evaluating speech privacy. While PER

and WER are commonly used metrics for assessing the performance of automatic speech recognition (ASR)

systems, they are not specifically designed for privacy evaluation. Although we measured and reported the “safe

zones” based on our user study, indicating areas where privacy is preserved, it is important to note that these

safe zones are not guaranteed to be completely safe from privacy risks. Our findings suggest that while PER and

WER are useful in determining the privacy characteristics of audio featurization, they should be complemented

with additional privacy evaluation measures to provide a more comprehensive assessment of speech privacy.

Further research into specialized metrics or evaluation methodologies for speech privacy would contribute to the

development of more reliable and robust privacy evaluation frameworks.

8 CONCLUSION
Deep learning-based automatic speech recognition (ASR) has posed new challenges to privacy-focused audio

featurization techniques. Such a risk exists primarily because modern ASR systems can be tuned to recognize

speech content specifically to these audio featurization techniques. We aim to systematically characterize various

featurization techniques on audio data, particularly those that extract statistical and spectral features using

Fast Fourier Transforms (FFTs), and evaluate the privacy risks and utility tradeoffs. We first explore different

FFT-based featurization approaches proposed in prior works that aim to remove sensitive information from

raw audio while providing utility to activity recognition tasks. We then study the recent advancements in deep

learning-based automatic speech recognition (ASR) and their potential impact on these edge audio featurization

techniques. We also investigate the utility of different featurization approaches in generating discernible features

for machine learning prediction. We then propose Kirigami, a general-purpose edge audio speech filter resilient

to various speech recognition or audio reconstruction techniques while being feasible to implement on edge

devices with limited computational power. We plan to open-source our Kirigami codebase for researchers and

practioners to use and build upon.
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