
 

“COLUMN”: Challenges in Realizing Smartphone-based Health Sensing 

Challenges in Realizing 

Smartphone-based  

Health Sensing 

This article presents three case studies involving 

smartphone-based health sensing projects 

undertaken by our team. We highlight key challenges 

that we have encountered while advancing these 

projects beyond their pilot stages and propose 

potential directions for engineers, manufacturers, and 

researchers to address such challenges in the future. 

Advances in science and technology continue to revolutionize medical screening and monitoring. 

However, people do not benefit from these advances nearly as much as they could. The more fre-

quently a person visits a clinic, the sooner they can receive a diagnosis; once diagnosed, treat-

ment can be delivered more effectively as the patient can monitor their condition more often. 

However, people typically only schedule yearly checkups, if any at all, because it is not feasible 

for them to go to the doctor’s office more frequently. Even if people are able to make weekly or 

monthly clinic visits, doing so puts a significant strain on healthcare systems. In the end, reactive 

healthcare is far more common than preventative healthcare. 

People who do not have convenient access to healthcare services are in an even worse position to 

take advantage of advances in medicine. The World Health Organization estimates that as of 

2017, 44% of its member states fall below their recommendation of one physician per 1,000 citi-

zens1. Even in nations that meet the WHO’s recommendation, people sometimes live 3-4 hours 

away from the closest clinic. Many people in those circumstances rely on community health 

workers (CHWs) to periodically bring all the necessary screening and monitoring equipment to 

them; however, CHWs can only carry so many tests with them and must work with a limited 

budget and training2.  

We believe that these issues arise because most medical devices are designed with accuracy as 

their main goal rather than deployability beyond hospitals and clinics. Although accuracy is criti-

cal for health applications, there is an opportunity for a new class of medical devices that make 

small sacrifices in accuracy to enable wider coverage. The mobile health (mHealth) movement 

aims to support people’s health-related needs with existing mobile devices like smartphones and 

wearables. mHealth can evoke a number of objectives, including the dissemination of medical 
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information and tighter communication between clinicians and their patients. Our research group 

focuses on the development of smartphone-based health sensing apps. Smartphones include sen-

sors like accelerometers, microphones, and cameras that can be leveraged to mimic a variety of 

medical devices. A simple app download could give anyone, anywhere the ability to perform di-

agnostic screening tests and monitor their condition if or when they receive an official diagnosis. 

We have explored various medical subdomains, including hematology3–5, spirometry6, and cardi-

ology7. By making a conscious effort to extend these apps beyond pilot studies, we have uncov-

ered a number of challenges in bringing smartphone-based health sensing to fruition in today’s 

medical and technological infrastructure. These challenges include: (1) limitations fundamental 

to smartphones themselves, (2) the heterogeneity of smartphone specifications, (3) quality con-

trol for measurements in-the-wild, and (4) helping untrained users rationally interpret their data.  

In this article, we share our experiences through a subset of our projects as a series of case stud-

ies. We then describe how the aforementioned challenges have manifested in these projects. We 

discuss how we have addressed some of the challenges in our own work and propose more gen-

eralized solutions that can help streamline the realization of these ideas, both in terms of new re-

search directions and manufacturer recommendations.  

CASE STUDY #1: BILICAM AND BILISCREEN 

Jaundice is the yellowing of the skin and eyes due to the buildup of a compound in the blood 

stream called bilirubin. Jaundice is a common occurrence in newborns since their livers have not 

developed sufficiently to break down bilirubin; if left untreated, elevated bilirubin can lead to 

brain damage. Adults can develop jaundice as well due to conditions that affect the liver and 

pancreas, such as alcoholism, hepatitis, and pancreatic cancer.  

In the past, clinicians have been able to manually analyze photographs of newborns with Pho-

toshop to assess jaundice8. BiliCam4 automates that process using computer vision and machine 

learning so that anyone with a smartphone can do the same. To use the app, a user takes a picture 

of the newborn’s skin. The app summarizes the skin’s color as a feature vector composed of val-

ues from multiple color spaces (e.g., RGB, HSV). Those features are mapped to blood test re-

sults collected during training to produce a machine learning model that estimates a bilirubin 

level for future images. Needless to say, skin tone is an important factor when assessing jaundice 

in the skin, but BiliCam has generalized well given the richness of our training data. In a study 

with 530 newborns, BiliCam had a mean error of 0.01  1.8 mg/dl and a rank-order correlation 

of 0.91 when compared to the gold-standard blood draw measurements9. 

BiliCam does not work for adults because the unhealthy bilirubin level for an adult is an order of 

magnitude less than that of a newborn (1.5 mg/dl vs. 15.0 mg/dl); this level is difficult to detect 

in the skin, yet more noticeable in the sclera—the white part of the eye. Therefore, we developed 

BiliScreen5 as an analogous app for adults. The machine learning pipeline is similar to Bil-

iCam’s, but instead of segmenting the user’s skin, BiliScreen segments the sclera. The initial 70-

person study for BiliScreen yielded a mean error of -0.09  2.8 mg/dl and a Pearson correlation 

coefficient of up to 0.89 when compared against the blood draw. 

CASE STUDY #2: SPIROSMART 

Pulmonologists often assess a patient’s lung function by having them perform a test through spi-

rometry. Lung function is central to the diagnosis of chronic lung conditions such as asthma, 

chronic obstructive pulmonary disease (COPD), and cystic fibrosis. To use a clinical spirometer, 

the patient inhales to fill their lungs and then exhales through a mouthpiece as forcefully and for 

as long as possible. The mouthpiece is attached to a sensor that measures the flow rate of the air 

leaving the patient’s lungs, and volume is calculated through cumulative air flow. This data re-

sults in a flow-versus-volume curve that can be summarized using metrics such as peak expira-

tory flow (PEF) and forced vital capacity (FVC). Pulmonologists analyze these metrics and track 

them over time to monitor a patient’s condition. 
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SpiroSmart6 uses the smartphone’s microphone as an uncalibrated flow sensor for measuring 

lung function. Microphones measure sound, which is a pressure wave. According to Bernoulli’s 

principle, the flow rate of a fluid like air is inversely related to pressure; therefore, a microphone 

measures an increase in flow rate as a decrease in pressure. Past research has demonstrated that a 

microphone can be used to classify wheezing according to flow rate10. SpiroSmart uses a similar 

principle to produce the same flow-versus-volume curves that a spirometer would. To perform 

the test, a user holds their phone out at roughly arm’s-length, inhales, and then exhales as if they 

were using a spirometer mouthpiece—mouth wide open while forcing as much air as they can 

for as long as possible. Like a flute, a person’s trachea becomes quieter when it is obstructed and 

higher pitched when it is restricted. SpiroSmart combines both time- and frequency-domain fea-

tures to infer flow. The time-domain features encode characteristics of the sound’s envelope; the 

frequency-domain features are extracted through resonance tracking on the sound’s spectrogram 

(Figure 1). Regression models are trained to estimate the flow-versus-volume curves from these 

features. With models trained on data from 5,000 participants, SpiroSmart achieves a mean error 

rate of 5.7% for FEV1%, the most common measure of lung function; as a point of comparison, 

the American Thoracic Society requires spirometers to be within 7-10% of one another on such 

measures11. 

CASE STUDY #3: HEMAAPP 

Hemoglobin is a protein in red blood cells that carries oxygen through the body. A low hemoglo-

bin level, known as anemia, can often indicate that a person’s body is producing less hemoglobin 

than it is breaking down. Anemia due to malnutrition is one of the biggest reasons behind infant 

mortality and stunted childhood development in low-resource regions. Anemia is also common 

amongst pregnant women since their bodies must provide sufficient nutrients to both themselves 

and their children. The best way to measure hemoglobin is through a blood draw. Recently, de-

vices like the Masimo Pronto have been developed for measuring hemoglobin noninvasively us-

ing a technique called hemachrome analysis. This technique entails shining various wavelengths 

of light through the fingertip and measuring how much light is reflected or absorbed. As blood 

rushes in and out of the finger at each heartbeat, only the absorption due to the blood changes; 

absorption by the surrounding tissue is constant. The hemoglobin concentration is calculated by 

comparing the absorption ratios across wavelengths. 

Instead of using a dedicated light source and sensor, HemaApp3,12 relies on the smartphone’s ex-

isting hardware. Prior work has shown that a person can measure their pulse by covering the 

smartphone’s camera and flash with their finger and having the smartphone measure the change 

in brightness as the heart beats13. HemaApp goes a step further, estimating the hemoglobin con-

centration against total blood volume by analyzing the color channels. HemaApp uses machine 

 

Figure 1. (left) SpiroSmart uses the smartphone’s microphone as an uncalibrated flow 
sensor to produce flow-versus-volume curves that represents the user’s lung function. (right) 

Features like the resonance of the trachea are extracted from the audio’s spectrogram to 
train SpiroSmart’s machine learning algorithm. 
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learning to estimate the absorption coefficients of hemoglobin and plasma at the smartphone 

flash’s broadband wavelengths. The features include the intensity of the measured light source, 

the amplitude of the intensity variation over time, and intensity ratios between the peaks and 

troughs for each of the different color channels independently. The initial 31-person HemaApp 

study yielded an RMSE of 1.26 g/dL and a rank-order correlation of 0.82 when compared 

against a blood draw, both of which are comparable to the Masimo Pronto.  

OPEN CHALLENGES IN SMARTPHONE-BASED 
HEALTH SENSING 

Challenge #1: Limitations Fundamental to Smartphones 

Most smartphone sensors are primarily focused on improving the user experience. IMUs meas-

ure the smartphone’s orientation to determine how content should be presented, microphones 

record audio for communication, and cameras allow users to capture images and videos of their 

favorite moments. Because these user experiences are currently the primary driving force behind 

smartphone sales, sensor specifications do not exceed what is necessary to support them.  

For example, CMOS image sensors used for smartphone cameras are sensitive to visible and 

near infrared wavelengths (400-1000 nm). However, most smartphone manufacturers place a 

thin film on top of the sensor to block infrared light, limiting the spectrum to 400-700 nm to en-

sure that photographs are visually correct. This design decision for common photography use-

cases is counterproductive to specific use-cases like HemaApp that could benefit from an ex-

tended light spectrum. The design of the flash LED also poses challenges for both HemaApp and 

BiliScreen. The LED is intended for flash photography and torch lighting, so it is designed to 

produce intense light. For BiliScreen, that intensity can cause discomfort to someone who stares 

directly at the light. The flash LED and camera also get hot if they are left on for too long, which 

can cause discomfort while using HemaApp.  

Our Approach 

Although the IR blocking film presents difficulties for HemaApp, some IR light can still leak to 

the camera if enough is shone. The initial study of HemaApp exploited this fact by utilizing a 

custom IR and visible light LED array with an incandescent light bulb to augment the 

smartphone’s limited spectral range. The study revealed that incorporating the extra LEDs im-

proved the rank order correlation coefficient between HemaApp’s estimates and the correspond-

ing blood draw result from 0.69 to 0.82 when compared to only using the built-in white LED. 

The use of custom lighting is less attractive than being able to use what already exists on 

smartphones. Conveniently, newer models have an IR time-of-flight autofocus sensor positioned 

right next to the rear camera. The current Android API does not provide access to the raw data, 

but rather the end result of an algorithm that estimates distance. We have accessed this data 

through a custom kernel installation.  

Fortunately, smartphone operating systems have begun to give low-level access to some sensors. 

In the context of HemaApp, standard white-balancing algorithms often suppresses blue and 

green channel fluctuation because the red channel fluctuation from the blood is so dominant. The 

Camera 2 API for Android allows for control over such gains, which HemaApp leverages for 

consistent variation across the color channels. Smartphone operating systems have also begun to 

provide access to raw image files, which are useful for apps like BiliCam and BiliScreen that re-

quire the truest representation of color directly from the camera sensor.  

Future Directions 

A smartphone operating system that offers more control over sensors and other smartphone com-

ponents can accelerate exploration at the intersection of health and mobile sensing, especially 
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when developers have access to raw sensor data. For example, the IR time-of-flight sensor can 

be used as a pulse sensor if an API exposes raw sensor values, avoiding the need for custom ker-

nel solutions that cannot be widely deployed. 

A loftier goal would be for smartphone manufacturers and researchers to come together and 

agree upon a concise set of sensors that together form a “dedicated health sensor”. Our approach 

to health sensing has been to push the limits of sensors that already exist on smartphones, yet 

history has shown that manufacturers are willing to support new sensors if their use has enough 

value proposition. Apple’s M-series coprocessors offload the collection of accelerometer and gy-

roscope data from the main CPU for gesture recognition even when the smartphone is asleep, 

and dedicated depth sensors are beginning to appear on newer smartphones for augmented reality 

applications. Demonstrating the utility of new sensors often requires working with dedicated 

hardware and then identifying the minimum requirements needed to support the application. This 

approach can also uncover signals that may not have been discovered otherwise by limiting re-

search to smartphone sensors.  

Challenge #2: Smartphone Heterogeneity 

HCI and ubiquitous computing researchers often cite the fact that smartphones are pervasive, but 

this statement only applies to the general category of smartphones; not all smartphones are cre-

ated equal. There are multiple smartphone manufacturers (e.g., Samsung, Apple, Motorola) and 

software operating systems (e.g., Android, iOS), which lead to a diverse smartphone ecosystem. 

This poses challenges when someone wants to receive FDA approval for an app that relies on the 

built-in sensors of whichever smartphone model they happened to use for prototyping. The FDA 

has spent years devising regulations about dedicated medical devices ranging from MRI ma-

chines to blood glucose monitors—devices that are assumed to be static and self-contained, per-

forming only their prescribed function with a fixed hardware and software specification. 

The studies presented in this article were conducted using a single smartphone model to avoid 

cross-device biases. Attaining FDA approval for those apps would require further studies with 

many different smartphone configurations. Camera-based apps like HemaApp or BiliScreen, for 

example, would have to work for a number of different camera modules, LEDs, and sensor ar-

rangements. The flow detected by the microphone in SpiroSmart relies on the mechanical trans-

duction of sound, which is affected by the position of the microphone and the physical casing 

surrounding it. If generalizability is not possible, developers must restrict potential users to a 

subset of devices or convince manufacturers to fulfill specific hardware and software require-

ments to support their app.  

Our Approach 

In BiliCam and BiliScreen, smartphone diversity is handled by performing a check on the cam-

era’s properties during data collection. Both apps include paper accessories for color calibration: 

a square card for BiliCam and glasses for BiliScreen (Figure 2). These accessories are inspired 

by a Macbeth ColorChecker, a professional tool for post-hoc color balancing. If an accessory’s 

 

Figure 2. To account for different lighting conditions and camera sensors, both (left) BiliCam 
and (right) BiliScreen incorporate paper accessories with colored squares that can be used 

as calibration references. 
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colored squares appear different from what was expected, whether due to ambient lighting or the 

camera’s sensitivity to various wavelengths, then the same artefact is likely affecting the appear-

ance of the skin. A calibration matrix that corrects the discrepancy can be applied to the rest of 

the image to standardize colors across images.  

Future Directions 

Requiring an accessory for standardization adds another potential point of failure that must be 

FDA-approved. If the BiliCam card’s colors fade over time while the card is kept in a person’s 

wallet, the app’s performance worsens. The card must also be printed with the same ink and pa-

per used to train the algorithm. In the end, a seemingly trivial addition requires so much consid-

eration that people would probably not be allowed to print the card themselves. Although we 

posit that such accessories would be far less expensive than a dedicated device, requiring an ex-

tra component limits deployability. 

Another solution is to create transfer functions based on sensor specifications. When a complete 

transfer function cannot be generated between sensors, such as two microphones with different 

sampling rates, compensation mechanisms can be introduced to cater to the common denomina-

tor. For developers to find detailed information on a particular sensor, they must currently either 

disassemble the smartphone and look up the sensor’s part number online or dig through the soft-

ware’s kernel and hope the information is documented. Having part numbers accessible in a cen-

tralized database or API would help developers understand the capabilities of the sensors at their 

disposal and account for the diversity in the market. At the minimum, this would allow develop-

ers to restrict their app’s use to compatible models or software states. 

Challenge #3: Quality Control of Data Collection Procedures 

Clinical tests are conducted under the supervision of a trained professional. With spirometers, for 

example, pulmonologists can ensure that their patients use the mouthpiece properly by placing 

their lips around the tube rather than within it. Pulmonologists can also coach patients on how to 

properly perform the breathing maneuver so that a spirometer can properly measure their peak 

and total lung function. Going from using a spirometer in a clinic to using SpiroSmart at home 

removes that safety blanket of quality control. If a user does not push their lungs to the limit 

while using SpiroSmart, they can be left with nonsensical results that are not representative of 

their health. Environmental factors are also more controlled in clinical settings. Traditional spi-

rometers are accurate because they measure flow directly and their mouthpieces block out ambi-

ent noise. For SpiroSmart, however, the microphone picks up all the sound that occurs during the 

measurement, adding unexpected noise to the data.  

Enforcing quality control is not only important for the immediate results that people receive, but 

also for algorithm development. The more assumptions that can be made about the signal, the 

easier it is for a researcher to design a signal processing pipeline or a machine learning algorithm 

that arrives at an accurate model. Data collection with many edge cases leads to outliers that ei-

ther impede system accuracy or need to be handled explicitly. 

Our Approach 

Automatic checks can be implemented to assess the ambient environment before data collection. 

For example, the BiliCam and BiliScreen apps check that there are no significant shadows or 

glare spots obstructing the color references. Real-time visualizations can also be made to coach 

users on how to improve data quality. The SpiroSmart app includes a dynamic visualization that 

reacts to the flow rate sensed by the microphone in order to encourage users to exhale as much 

air out of their lungs as possible (Figure 3, left).  

When environmental factors or physical abilities impede a person’s ability to comply with data 

collection, inexpensive accessories can improve the process. One of the observations from the 

first SpiroSmart deployment was that people with severely impaired lung function sometimes 

struggled to keep their mouths wide open as they performed the breathing maneuver. To help 
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those people, a 3D-printable vortex whistle was developed to hold a person’s mouth open like 

the mouthpiece does for a spirometer (Figure 3, right). The vortex whistle has an extra useful 

property: the faster the flow of air that enters it, the higher the pitch that leaves it. In other words, 

the vortex whistle acts as a flow-to-pitch transducer that simplifies the sensing problem. 

Future Directions 

Another way quality control can be integrated into an app is by adding a classifier that decides 

whether or not data is “valid” before it goes to the main analysis component. In the case of spi-

rometry, researchers had already categorized the mistakes made during spirometry maneuvers 

(e.g., coughing during the test, pursing lips while blowing)14. We have trained a machine learn-

ing algorithm that identifies these errors for spirometer maneuvers in order to provide users with 

targeted feedback so that they can improve their technique15. We are currently expanding this 

approach to SpiroSmart, as well. 

Challenge #4: Data Interpretation for Untrained Users 

The acceleration of hypochondria due to information available on the Internet, also known as 

cyberchondria16, is likely to be exacerbated by ubiquitous medical testing. Using BiliScreen as a 

worst-case scenario, users could interpret a positive test result as a pancreatic cancer diagnosis. 

However, not everyone with an elevated bilirubin has pancreatic cancer, and not everyone with 

pancreatic cancer has an elevated bilirubin. Even if users can internalize this subtlety, false posi-

tives and false negatives have significant repercussions, whether it be undue stress or a missed 

diagnosis. 

Doctors receive years of training on how to apply Bayesian reasoning when accounting for a test 

result in the diagnostic process. This procedure requires calculating the patient’s pre-test proba-

bility of having the condition and then updating that probability according to the accuracy and 

result of the test. Calculating the prior probability requires knowing the prevalence of the condi-

tion and the specific risk factors that may increase a person’s likelihood of having the condition, 

such as family history and environmental factors. Updating to a post-test probability given a pos-

itive test result entails calculating the positive predictive value (PPV) of a test—how often peo-

ple with a positive test result actually have the medical condition. Calculating PPV requires 

knowing the test’s sensitivity (true positive rate), the test’s specificity (true negative rate), and 

the prevalence of the condition: 

 (1) 

This calculation does not always lead to intuitive results. A test with a sensitivity and specificity 

of 80% for a disease that occurs in 15% of the population will have a PPV of 41.3%. A similar 

  

Figure 3. (left) As a person pushes more air out of their lungs, the ball in the SpiroSmart 
visualization rises to the top and encourages to the user to continue the maneuver. (right) 

The SpiroSmart vortex whistle can be used to control the diameter of the user’s mouth, 
acting as a flow-to-pitch transducer. 
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test for a disease that occurs in 5% of the population will have a PPV of only 17.4%. In both 

cases, the test performs worse than random chance despite having a seemingly decent accuracy.  

Test results are never black-and-white; all models have uncertainty bounds that complicate deci-

sions. For example, the current state of BiliScreen has a mean error of -0.09 ± 2.76 mg/dl. This is 

reasonable for a disease management scenario when a person’s bilirubin may vary between 5-20 

mg/dl. For a diagnostic scenario, where the threshold for concern is around 1.3 mg/dl, it is debat-

able whether or not a test result of 2 mg/dl should be considered elevated. 

Future Directions 

We have yet to tackle this challenge ourselves, but we foresee significant contributions that can 

be made by researchers. If smartphone-based health sensing apps are going to be freely distrib-

uted to the general public rather than prescribed and supervised by trained physicians, the routine 

of estimating a post-test probability should be as automated as possible. Apps should be able to 

calculate a pre-test probability by collecting risk factor information. Family history and demo-

graphic data can be explicitly recorded through digital forms. Sensors can also be used to infer 

risk factors. As an example, GPS data could reveal that a person is at a higher risk of a lung con-

dition because of poor local air quality.  

The weighing scale provides an interesting study of how important the presentation of results can 

be to the decision-making process. All scales have uncertainty, yet people tend to fixate on the 

number they see. Weight is also a function of how much the person is wearing and how much 

they ate and drank before the measurement. Kay et al. found that people often forget these fac-

tors, leading to stress over negligible weight changes17. One scale design they suggest graph-

ically emulates a traditional analog scale with exaggerated needle movement to reflect 

uncertainty. Kay et al. also propose an “always-on” scale design that accounts for daily variance 

and incorporates information through low burden question prompts so that measurements can be 

automatically adjusted closer to their true value. Researchers in the machine learning community 

have actually trained models that learn how different clinical measurements vary over time to 

help clinicians identify high-risk patients18,19. The same models could be used to help users ex-

trapolate reasonable trends in their data if they feel the need to do so. 

THE FUTURE OF SMARTPHONE-BASED HEALTH 
SENSING RESEARCH 

Framing smartphone-based health sensing in the context of the existing smartphone infrastruc-

ture can be daunting. The smartphones already in people’s hands are not designed with health 

sensing in mind. A reasonable argument can be made that researchers should not restrict them-

selves to existing hardware from the onset, the alternative approach being to develop custom 

hardware. One issue we find with this approach is that it limits the potential scalability of a solu-

tion. Even if the novel hardware proves to be extremely useful, its uptake will be impeded by the 

rate at which people purchase the new device, assuming they can afford it in the first place.  

We believe that targeting existing smartphones early in the design process allows for more scala-

ble prototypes that can uncover potential issues sooner with a ubiquitous device. Had we not 

used a smartphone to prototype HemaApp, for example, we would not have discovered that the 

radiation characteristics of the LED would be integral to performance. Although today’s 

smartphones may not be always be suitable for the solutions developed in research labs, tomor-

row’s ubiquitous devices can be better informed by those investigations. Hopefully, researchers 

in this space will address the challenges we have presented in this article to eventually make 

medical sensing just a download away.  
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