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ABSTRACT 
We present Pose-on-the-Go, a full-body pose estimation system 
that uses sensors already found in today’s smartphones. This stands 
in contrast to prior systems, which require worn or external sen-
sors. We achieve this result via extensive sensor fusion, leveraging 
a phone’s front and rear cameras, the user-facing depth camera, 
touchscreen, and IMU. Even still, we are missing data about a user’s 
body (e.g., angle of the elbow joint), and so we use inverse kine-
matics to estimate and animate probable body poses. We provide 
a detailed evaluation of our system, benchmarking it against a 
professional-grade Vicon tracking system. We conclude with a 
series of demonstration applications that underscore the unique 
potential of our approach, which could be enabled on many modern 
smartphones with a simple software update. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Interaction techniques; Gestural input. 
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1 INTRODUCTION 
The human body is expressive and ofers many degrees of freedom 
for human-computer input purposes. Technologies able to digitize 
a user’s full-body pose could enable new interactive experiences 
beyond the touch-centric (and occasionally IMU-driven) input that 
we see on contemporary mobile devices. 

Today, full-body motion capture is most closely associated with 
computer-generated imagery in blockbuster flms, using expen-
sive multi-camera rigs and special suits with markers. However, as 
technologies have improved, consumer-oriented uses have become 
possible. For instance, there are now several companies ofering 
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Figure 1: Running on an unmodifed smartphone held in the 
hand (left), Pose-on-the-Go produces an animated, full-body 
pose estimation (right) through sensor fusion. 

small sensors, worn on the body, that digitize the wearer’s pose for 
use in more immersive VR experiences [5, 68]. Of course, the bar 
for consumer acceptance is high, and this highly-instrumented ap-
proach seems unlikely to go mainstream in the near future. A decade 
ago, Microsoft took a diferent approach with its XBox Kinect sen-
sor [41], a $150 accessory depth camera that could capture users’ 
pose without any worn instrumentation. A variety of interactive, 
pose-enabled games proliferated, crossing genres including sports, 
dance, and role-playing games [42]. 

Regardless of whether the sensors are worn or external, the 
necessity for extra devices, plus the added cost of that hardware, 
dampens the likelihood of mass adoption. More importantly, both 
approaches preclude many interesting uses of body digitization 
when people mobile and outside of controlled settings. In response, 
we set out to develop a full-body pose estimation system that could 
run entirely self-contained on a smartphone held normally in one’s 
hand. Our system can work on the go, ofering new avenues of 
interactivity anywhere and without prior setup. For this reason, we 
call our system Pose-on-the-Go. 

Achieving this vision required leveraging almost every sensor 
at our disposal in modern smartphones, including the front and 
rear cameras, user-facing depth camera, capacitive touchscreen, 
and IMU. We fuse data from these disparate sensors to rig a real-
time, animated skeleton of the user as they operate their phone (see 
Figure 1). As far as we are aware, Pose-on-the-Go is the frst sys-
tem to demonstrate full-body pose estimation using an unmodifed 
smartphone held in the hand. This afords our approach wide appli-
cability and superior practicality over other methods, which almost 
all require special instrumentation. An additional contribution is 
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our rigorous study, benchmarking against a true gold standard - a 
professional-grade Vicon optical tracking system. 

We believe exposing live user pose (even a coarse approximation 
as we demonstrate) as an API on mobile devices could enable some 
very creative and novel interactive experiences. For example, one of 
our example applications is a 3/4 perspective space shooter where 
the user’s virtual on-screen character matches their live body pose, 
ofering a unique level of embodiment not previously seen in smart-
phone gaming. Indeed, a signifcant beneft of being software-only 
is that many recent smartphone models could be enabled via an 
over-the-air update, and our software could run as a background 
service on top of which developers could build pose-enabled apps. 

2 RELATED WORK 
Full-body motion capture has a long history, dating back to at least 
1878 with Muybridge’s “The Horse in Motion” [21]. This flm is 
widely regarded as the start of chronophotography, a photographic 
technique for the scientifc study of movement and especially loco-
motion. Later pioneers, such as Max Fleischer, used rotoscoping as 
a way to capture and then transform complex movements, such as 
locomotion, for use in early 20th century animated flms. Today, dig-
ital technologies have enabled a wide variety of highly-automated 
and precise techniques for human motion capture. We now review 
this literature, paying particular attention to systems that capture 
continuous full-body pose, as opposed to techniques for tracking 
just fngers or hands in free space. 

2.1 External Body Capture Sensing 
The most common way to capture a user’s pose is with external 
sensors fxed in a room. Cameras are by far the most popular sen-
sor type. To facilitate accurate capture, passive (e.g, retrorefective 
balls [45, 67], fducials [5]) or active [51, 68] markers can be worn. 
The advent of depth cameras helped to overcome long standing 
challenges in user segmentation and enabled some of the frst com-
mercial applications ofering markerless pose tracking (e.g., Mi-
crosoft Kinect [41], OpenNI [48], and Intel RealSense [31]). More 
recently, advances in computer vision have enabled markerless 
pose tracking with standard RGB cameras (e.g., OpenPose [16], 
PoseNet [49], DensePose [4]). Many non-optical body tracking 
approaches have also been considered, utilizing e.g., mechanical 
linkages [62], acoustics [3, 20], magnetic felds [47, 53], RF [74], and 
RFID tags [33]. 

2.2 Worn Body Capture Sensing 
The need for external infrastructure inherently means body capture 
is limited to a specifc location. Additionally, external sensors may 
be undesirable in settings such as the home for aesthetic and privacy 
reasons. Finally, sensing a user at a distance (e.g., with a camera) 
has inherent accuracy drawbacks. For these reasons, worn systems 
are also popular, ofering location fexibility and generally a high 
degree of accuracy, benefting from tight coupling to the object 
they are sensing. 

A wide variety of approaches have been developed, including 
exoskeletons [40], worn ultrasonic beacons [24, 69], and worn mag-
netic tracking [17]. However, two categories of sensing approaches 
stand out. First are IMU-equipped, battery-powered and wireless 

sensor boards, now sufciently small and light to permit place-
ment on many parts of the body without impeding movement. 
There are innumerable academic [25, 44, 63] and commercial sys-
tems [5, 30, 66, 71] that use this approach, often coupled with an 
inverse kinematic solver to improve output. Second most com-
mon are camera-based methods. Arrangements include cameras 
worn on the head with markers on the body [73], outward-facing 
cameras worn on joints capturing optical fow [60] and multi-user 
co-located systems wherein users digitize each other [1]. There are 
also systems that fuse data from worn IMUs and cameras [38, 55]. 

We also note there is an expansive literature on worn systems 
that recognize static hand poses (thumbs up, fst, etc.) for gestural 
input purposes (see e.g., Chen et al. [18] for a survey). However, 
these systems are very diferent in operation and goal, and do not 
attempt continuous pose estimation. 

2.3 Single-Point Worn Body Capture Sensing 
If a body capture technology needs only a single point of instru-
mentation, and is not reliant on any extra components worn on 
the body or installed in the environment, it can be considered “self-
contained” and “single-point”. Such systems are inherently mobile, 
able to function anywhere in the world. This combination of prop-
erties makes it the rarest in the literature, but also often the most 
practical. 

There are several single-point worn systems able to capture arm 
pose. Among the earliest was Digits [35], which used a wrist-worn 
infrared camera and line laser to measure fnger bend, which was 
passed to an IK solver to generate a continuous hand pose. Arm-
Track [59] demonstrated that an IMU in a smartwatch, in concert 
with an IK solver, could estimate continuous arm pose (shoulder, 
elbow and wrist joints). IK has similarly been used to model upper-
body pose [46, 50]. Worn depth cameras have also been used to 
capture a 3D model of the arms and hands [27, 56]. More recently, 
commercial AR/VR systems such as the Oculus Quest 2 [22] and 
Microsoft HoloLens [43] include hand and arm pose tracking capa-
bilities. The former uses wide angle cameras, while the latter relies 
on specialized depth cameras, all of which are integrated into a 
VR/AR headset. It is also worth mentioning PuppetPhone [6], which 
uses several smartphone sensors and a “MotionStick” interaction 
metaphor to realistically control (and animate) a virtual character 
in a passthrough AR experience. 

There are only a handful of self-contained, worn systems able to 
capture full body pose. The frst is EgoCap [54], which used a pair 
of downward-facing fsheye cameras cantilevered from the head, 
proving a sufcient view for a computer vision pose model to ex-
tract a body skeleton. Mo2Cap2 [72] is virtually identical, except it 
uses just a single fsheye camera. Instead of requiring extra cameras, 
MeCap [2] shows that the rear camera of a smartphone placed into 
a low-cost VR headset can capture full body pose with a clip-on 
mirror accessory. Finally, and perhaps most practical, is [64], which 
demonstrates that the wide-angle RGB cameras contained in Face-
book’s latest VR headsets could be used to capture a wearer’s body 
skeleton. Equally practical is [19], which uses a smartphone’s user-
facing camera and IMU for 3-DOF localization of the device with 
respect to the user’s body for around body interaction. Later, [36] 
extended this idea and added a depth camera to improve tracking 
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Figure 2: Left: User-facing camera view with head vector 
shown in green. Right: Avatar with corresponding head pose. 
Note that eye gaze is also captured and applied to the avatar. 

accuracy and capture the user’s shoulders. Finally, [11] uses two 
smartphones in a 3D printed case to provide tracking of a user’s 
hand holding the device, along with the user’s head position, rela-
tive to a distant display using inside-out tracking. To our knowledge, 
Pose-on-the-Go is the only system to demonstrate full-body pose 
tracking using a single unmodifed smartphone held regularly in 
the hand. 

3 IMPLEMENTATION 
We built our proof-of-concept implementation on iOS, which has 
an API that allows both the front and rear cameras to be streamed 
simultaneously (a feature now available on some Android smart-
phones, and likely to be mainstream soon). iOS also ofered a robust 
set of APIs across all of the features we wished to implement (face 
tracking, pedometer, locomotion mode prediction, 6-DOF absolute 
spatial tracking, etc.), and many of the heavier-weight APIs are opti-
mized to take advantage of hardware acceleration, ofering us some 
computational headroom. As a development device, we selected an 
iPhone XR, which is Apple’s mid-tier ofering. 

3.1 Inverse Kinematic Model & 3D Engine 
There are many inverse kinematic (IK) SDKs available, both open 
source and commercial. We chose to use Root-Motion’s VRIK li-
brary [58] running on the popular Unity engine [65], which has 
native iOS support and an extensive set of tools and assets for creat-
ing example apps. As with our hardware, Pose-on-the-Go does not 
have any strong dependencies and should work with practically all 
human IK packages. To facilitate rapid prototyping, we wrote a thin 
smartphone app responsible for interfacing with all sensors and 
streaming data to a MacBook Pro laptop (3.1 GHz Dual-Core Intel 
i5, 16 GB RAM) over WiFi, where our Unity-based implementation, 
along with the IK solver ran. With additional engineering, it should 
be possible to run the entire process on the smartphone. 

3.2 Head Position & Orientation 
The frst step of our process is to establish the position and ori-
entation of the head relative to the phone. For this, we use the 

Figure 3: Head rotations are also refected by the avatar in-
dependently from the chest normal. 

user-facing camera and ARKit’s ARFaceAnchor API [7], which of-
fers 6-DOF head tracking (see Figure 2 and 3). Note this does not 
use the iPhone’s user-facing depth camera. 

3.3 Eye Gaze 
The same ARFaceAnchor API [7] also provides an estimate of the 
gaze vectors for each eye. Although too inaccurate to enable gaze 
targeting on the phone’s screen, it is more than sufcient to realis-
tically animate the eyes of our avatar, providing another dimension 
of expressivity (see Figure 2, 6 and also Video Figure at 0:39; feature 
disabled in all other clips). 

3.4 Torso Orientation 
While ARKit comes with advanced, built-in functionality to track 
heads, it ofers no facilities to track the user’s lower body. Critically, 
body orientation needs to be established as it moves independently 
from the head. To capture chest yaw, we use the iPhone XR’s user-
facing depth camera to exact two bilaterally-symmetric patches 
on the user’s torso (Figure 4) and compute a chest yaw vector. 
These patches cannot be statically positioned, as the user’s head 
and body move around in the camera’s feld of view, and sometimes 
the chest is not visible at all. Instead, we take 85% of the detected 
head width and place two patches on either side of the head’s center 
line. For vertical positioning, we move down 50% of the detected 
head height from the bottom of the head. We then use the median 
depth value from each 5x5 pixel patch, and the distance between 
the two patches, to estimate torso rotation. If the patches are not 
in the depth camera’s feld of view, the IK solver tries its best to 
animate and orient the torso using other available data. 

Estimating chest pitch is more challenging, as less of the chest is 
seen vertically from which to extract reliable patches, and variation 
in body geometry, such as breasts, can afect the calculated pitch 
vector. These factors would have to be accounted for in order to 
produce a reliable estimate. Fortunately, in most cases when one is 
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Figure 4: Left: Depth map provided by iPhone XR user-
facing TrueDepth camera, with head tracking (red; bound-
ing box extracted from the RGB camera) and torso patch 
extraction (blue) superimposed. Right: this data allows the 
torso to rotate independently of the head, as seen in this 
avatar. 

standing, walking or sitting, the chest is generally oriented perpen-
dicular to the ground, without an extreme pitch, and so we found it 
was not vital to compute this vector to achieve reasonable output. 

We also acknowledge that only a handful of Android phones 
contain user-facing depth cameras at present, but as costs fall, it 
may become more pervasive in the same way multiple rear RGB 
cameras have trickled down to mid-tier devices. Regardless, in 
cases where a depth camera is not available, we found that a rough 
approximation of the torso yaw is still possible by using the user-
facing RGB camera and a 2D pose model (e.g., PoseNet [49]) and 
utilizing the asymmetry of the two shoulder points relative to the 
head. 

3.5 Phone Orientation 
Using its IMU, the phone tracks its absolute 3-DOF orientation, 
establishing both north and down (i.e., gravity vector). We use 
this data to animate the avatar’s hand holding the phone. More 
importantly, by combining this 3-DOF data with the aforementioned 
6-DOF tracking of the user’s head, we can now correctly orient the 

Figure 5: Phone orientation (pitch, yaw, and roll) is used to 
control the phone prop and better pose the wrist and hand. 

Figure 6: Pose-on-the-Go tracking a user’s arm pose and eye 
gaze. 

head with respect to the world, from which we can “hang” the rest 
of the user’s body (see Figure 5). 

3.6 Arm & Hand (Holding Phone) Pose 
At this stage, we know the relative spatial arrangement between the 
phone, head and torso. We assume the phone is held in one hand, 
and that an arm links the two (Figure 6). As the elbow and wrist 
joints are rarely seen in the user-facing camera view, we instead 
use the IK solver to generate a likely arm pose, articulating the 
avatar’s elbow to connect the two points (i.e., shoulder to phone). 
As briefy noted in the last section, we also take into account phone 
orientation to articulate the wrist joint. Finally, we assume the 
phone is held in a standard grasp, and so we pose the avatar’s 
fngers to match. 

3.7 Arm & Hand (Not Holding Phone) Pose 
For the arm not holding the phone, we have very little data to 
operate on. Although the shoulder is often visible in the user-facing 
RGB and depth cameras, we almost never see the elbow, wrist, or 
hand. Fortunately, it is not uncommon for users to employ their 
other hand for input on the touchscreen. In such cases, we can use 
the cartesian touch screen location of the fnger, in combination 
with the 6-DOF location of the phone relative to the torso, to pose 
a plausible arm. 

Touchscreen input, such as clicks and swipes, are animated on the 
virtual phone held in the avatar’s hand. Note that we lose tracking 
the instant the fnger leaves the touchscreen. Rather than animating 
the arm dropping back to the side of the avatar immediately, we 
apply a small delay, which better simulates sequences of inputs 
(e.g., typing, repeated scrolling). We note that our proof-of-concept 
implementation is single touch only, with the avatar’s hand posed 
with a protruding index fnger; however, animating multitouch 
gestures (e.g., pinch-to-zoom) should be possible if desired (see 
Figure 7). 

3.8 Absolute “World” Position 
So far, we have only discussed the relative spatial arrangement be-
tween body parts and orienting the body with respect to the gravity 
vector. Such data alone would allow Pose-on-the-Go to provide an 
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Figure 7: Pose-on-the-Go tracks fnger position on the 
screen, which is refected on the virtual phone and also 
poses the joints for the arm not holding the phone. 

upper body pose, locked to a frontal view (e.g., fxed to the chest 
normal, allowing the head to look around). With the addition of ab-
solute 6-DOF “world” tracking, several more expressive dimensions 
can be enabled, which we discuss in the next two sections. 

One of the main reasons we selected iOS as our development plat-
form was ARKit’s best-in-class absolute 6-DOF tracking. Apple’s 
hardware-accelerated, inside-out sensing implementation combines 
both visual odometry using the rear camera and data from the 
iPhone’s IMU. This allows the phone to track its movement and 
position in 3D space. Since Pose-on-the-Go positions the head rela-
tive to the phone, the torso relative to the head, the arms relative 
to the torso (and so on), we can use the phone’s spatial data to not 
only translate our avatar accurately in space, but also rotate the 
avatar to match the direction the user is facing. 

3.9 Locomotion Mode & Leg Animation 
The 6-DOF location of a user’s body allows us to animate avatar 
locomotion, despite having no direct sensor data for the legs. To 
achieve this, we translate the avatar’s upper body and run VRIK’s 
solver, which contains animation support for bipedal locomotion 
(VRIK.solver.locomotion [57]). Stride length is a static parameter, 
and so to solve for diferent movement speeds, the leg animation 
is simply sped up or down, though this can produce unrealistic re-
sults. Additionally, small shifts in the user’s posture and occasional 
position tracking errors even when the user is standing still can 
cause the IK solver to take errant steps. 

To improve pose and animation quality, we leverage iOS’s CM-
MotionActivity API [8], which provides the following locomotion 
mode predictions: stationary, walking, running, cycling, automotive 
and unknown, along with a confdence score. We found this predic-
tion to a reliable flter, verses relying on motion alone to animate 
the legs. When the phone reports that a user is stationary, we do 
not animate the legs, except when turning the body. When walking, 
we set the stride length to that of a typical walk, while running 
requires a longer gait. By setting these parameters appropriately to 
a user’s anthropometrics, a more realistic animation is achieved. 

In the future, stride length could be set by the user, or perhaps 
automatically derived using absolute movement and the pedome-
ter [9] features in iOS. Note that we did not create special kinematic 

logic for cycling or driving locomotion modes, but these could be 
implemented in the future to pose the avatar more accurately (e.g., 
sitting in a car, riding on a bike). 

Although this process ofers only a very coarse approximation 
of leg movements, when taken together with the full-body avatar, 
the output is reasonably convincing. Anecdotally, we found users 
to be quite forgiving – it may be that people do not attend to 
their absolute leg position (e.g., while walking) at the same level of 
scrutiny as their arms or head, where spatial errors are immediately 
commented upon. 

Even with relaxed fdelity constraints, Pose-on-the-Go fails in 
two key ways. First and foremost, we do not know which leg leads 
in a bipedal movement; Pose-on-the-Go always steps with the right 
leg frst, which can cause the whole step sequence to be 180◦ out 
of phase. Secondly, we cannot handle small leg movements, such 
as repositioning of the legs during conversations or taking a half 
step towards an object, as our stride length is fxed per locomotion 
mode in our current implementation. In a future implementation, 
this could be improved by using a dynamic stride length based on 
e.g., user velocity. 

3.10 Sittings/Standing & Body Height 
Locomotion animation primarily leverages a user’s X/Y translation 
in an environment. However, the Z-axis (e.g., elevation) is useful in 
detecting and representing other poses, such as sitting and stepping 
onto objects (Figure 8). Elevation above the ground plane is not au-
tomatically provided in ARKit (though there are helper functions in 
ARWorldTracking). Instead, as a proof-of-concept implementation, 
we assume the phone starts in the user’s hand while standing. As 
we have absolute 6-DOF position tracking, we can simply calculate 
if the head is above or below its starting height, and correspond-
ingly rig the avatar with this constraint. In cases where the user 
is now higher than standing, we can infer the user has stepped up 
onto an object and we show the legs leaving the foor (Figure 8 far 
right). If the user is lower, the IK solver bends the legs constrained 
by the foor plane (Figure 8 center right). In general, this process is 
pretty crude as there are many ways to e.g., sit, squat, and kneel. 

Figure 8: A user standing (far left), walking, (center left), sit-
ting (center right) and standing on a box (far right) is mir-
rored by the avatar. 
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3.11 Data Synchronization 
Our implementation is highly asynchronous, with a wide variety of 
sensors and processes running at diferent framerates. Most notably, 
our head tracking pipeline using the front camera runs at 15.5FPS, 
our depth camera-driven torso normal extraction runs at 11.8FPS, 
and the phone’s 6-DOF spatial tracking runs at 19.9FPS. We set 
other low priority processes, such as reading the fnger touchscreen 
position, to 5FPS. All of this data is passed to our IK solver running 
in Unity, which is set to run at 60FPS, matching the screen refresh 
rate. 

Fusing many data streams of varying framerates requires some 
strategy for efective alignment. For our prototype implementation, 
a pool of threads asynchronously receive and store the most recently 
received frame of data for each sensor. Our main process loop, which 
runs at best efort given available CPU and GPU resources, simply 
uses the most recent data reported by all sensors. Although simple, 
we found this approach to be sufcient for our proof-of-concept 
system. An approach taking into account time-since-data-received 
could potentially extrapolate better live estimates of sensor values, 
and yield higher quality and lower-latency pose output – an avenue 
we leave to future work. 

3.12 Framerate, Latency and Power Draw 
As noted above, Unity (which runs IK, animates and renders the 
avatar) runs at 60 FPS, though the underlying sensor data arrives 
at a variety of frequencies. The best measure of end-to-end latency 
is "motion-to-photon", which is the time taken between a user’s 
motion and when the device’s pixels refect that change. For this, 
we used a 240 FPS camera to record the user and screen in the 
same scene. We found an average motion-to-photon latency of 
358ms (SD=63ms). Our implementation is very much a proof of 
concept, with minimal optimization, and thus these numbers should 
be viewed as a performance upper bound. For reference, Apple’s 
Animoji feature [10], which digitizes people’s faces as characters, 
runs with a latency of around ~150ms on an iPhone XR. We believe 
comparable performance should be achievable, certainly on future 
smartphones, which continue to make signifcant strides in compute 
power. 

Pose-on-the-Go requires many sensors to be running, including 
three diferent cameras, which is energy-intensive. To quantify 
this, we measured the power draw with our iPhone XR on its 
home screen and also running our Pose-on-the-Go daemon. We 
found a power consumption delta of ~5.3W, which includes running 
all sensors and system processes like ARKit and CoreMotion. In 
practice, we found our iPhone XR could run continuously for ~2h, 
which closely matches what we would expect from the iPhone 
XR’s 11.12Wh battery rating. Note that this power consumption 
number does not include running IK (not particularly intensive) or 
application graphics (highly variable depending on the app), which 
will add further burden. 

4 OPEN SOURCE MODEL AND DATA 
To enable other researchers and practitioners to build upon our 
system and study results, we have made our code and study data 
freely available at https://github.com/FIGLAB/PoseOnTheGo. We 
thank our participants for their permission to share this data. 

5 ADDITIONAL CAPTURE DIMENSIONS 
We note that our proof-of-concept feature set is not exhaustive, and 
future work could enable several additional dimensions of full-body 
capture on smartphones, further increasing fdelity and realism. 
We now briefy describe these avenues. In several cases, existing 
literature has already demonstrated feasibility. 

5.1 Smartwatch for Other Arm Tracking 
A natural limitation of Pose-on-the-Go is the inability to track the 
arm and hand not holding the phone or seen in the user-facing 
cameras. Instead, our system only animates this arm upon receiv-
ing touchscreen events, resulting in a very limited approximation. 
Fortunately, watches are often worn on the non-dominant arm, op-
posite to where most users would hold and use a phone one-handed. 
Thus, there is an opportunity for smartwatches to provide a com-
plimentary stream of IMU data that would permit high-quality, six 
degree-of-freedom animation of this other arm [59]. In cases where 
the smartwatch is worn on the same arm that holds the phone, the 
data would still be useful for improved rigging of the wrist joint. 

5.2 Finger Identifcation & Orientation 
There is considerable prior work that has extended the capabil-
ity of standard smartphone touchscreens, which could be put to 
use in Pose-on-the-Go. For instance, Le et al. [37] demonstrated 
fnger-identifcation using the size and shape of fnger blobs in 
the capacitive touch image. Using similar data, Mayer et al. [39] 
and Xiao et al. [70] demonstrated that fnger pitch and yaw can be 
recovered. In TapSense [28], diferent parts of the fnger, such as 
the knuckle or fngertip, could be recognized. All of the data above 
could be fed to Pose-on-the-Go’s IK model to more faithfully depict 
the pose of the hands, which fngers are in use, and their angles of 
attack. 

5.3 Facial Expression & Speech 
There are now innumerable software libraries able to track the 2D or 
3D geometry of a user’s face with a camera [12, 34]. This capability 
is seen in commercial applications such as Apple’s Animoji [10]. 
Such data could be used to enhance our avatar with realistic mouth 
and lip movements, both for facial expressions (e.g., smiles) and 
during speech. It may also be possible to render realistic mouth, lip 
and tongue movements by using the smartphone’s microphone to 
capture a users speech [23, 29]. 

5.4 Appearance 
As shown in systems such as MeCap [2], user-facing cameras can 
be used to capture one’s personal appearance, such as hair style, 
glasses and apparel, allowing instant, real-world personalization of 
avatars, ofering an alternative to manual editing through an avatar 
builder interface. 

6 EVALUATION 
We performed a series of studies, benchmarking Pose-on-the-Go 
against a professional-grade optical tracking system, which serves 
as a gold standard ground truth. Specifcally, we used a Vicon 
system [67], with twelve MX40 cameras and four T160 cameras 

https://github.com/FIGLAB/PoseOnTheGo
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Figure 9: Rotational errors for head, phone and torso in de-
grees. Error bars are standard error. 

capturing at 120FPS. We used Vicon Blade 3.2 for capture and data 
export and Vicon IQ 2.5 for data cleaning. Vicon’s software and 
Pose-on-the-Go produce equivalent 3D joint data (14 joints: head, 
torso, left shoulder, right shoulder, left elbow, right elbow, left wrist, 
right wrist, left hip, right hip, left knee, right knee, left foot and 
right foot), but in diferent coordinate systems. For analysis, we 
perform an extra post processing alignment step, designating the 
torso of both pose outputs as the body origin. 

We recruited 8 participants for our user studies (2 female) with 
ages ranging from 18 to 39 years (M=27.6 years); all were right-
handed. We asked our participants to complete a series of tasks, 
described in the rest of this section, in a randomized order. While 
completing the tasks, we purposely did not display the avatar on 
the phone or any screen, as participant’s may have adapted their 
movements. The Vicon system and Pose-on-the-Go captured data 
simultaneously (participants wore MoCap suits while also hold-
ing a phone running Pose-on-the-Go), but run on two separate 
computers. 

Lastly, even with synchronized system clocks (via NTP), data 
still required post hoc fne-grained synchronization. For this, we 
had users perform a calibration gesture at the start of each study. 
This calibration gesture had users extend their phone-holding arm 
directly forwards (parallel to ground), then rotating the arm up 
45◦, then down (−45◦), then returning to straight ahead, and then 
from left to right (also −45◦ to +45◦). After this, the users tapped 
the screen three times with the hand not holding the phone. Addi-
tionally, to isolate spatial accuracy separately from system latency, 
we dynamic time warp Pose-on-the-Go’s output to the Vicon data 
stream with a maximum shift of ±300ms. 

6.1 Head Orientation 
We asked participants to face a wall 1.5m away with four markers 
arranged in a rectangle. We asked participants to hold the phone in 
front of them in a natural position and perform the following head 
movements fve times in a row, using the markers as a positioning 
guide. 

• Pan left and then right across the middle of the markers. 
• Pan up and then down across the middle of the markers. 
• Pan clockwise around the perimeter of the markers. 
• Pan counterclockwise around the perimeter of the markers. 
• Pan across the markers in a “fgure eight” pattern. 
• Roll the head to comfortable extremes. 

Figure 10: Euclidean distance error of Pose-on-the-Go for 
Head Height, Leg Pose, Arm (hand not holding phone) and 
the Arm (hand holding phone). Error bars are standard er-
ror. 

These motions allowed us to evaluate the performance of Pose-
on-the-Go’s estimation of head yaw, pitch and roll. Across all par-
ticipants, we found a mean yaw, pitch and roll angular error of 6.4◦ 

(SD = 3.0◦), 5.4◦ (SD = 1.6◦) and 10.7◦ (SD = 4.0◦) respectively; 
see Figure 9. 

6.2 Torso Orientation 
In this task, we asked participants to rotate their chest left-to-right 
and back again (i.e., yaw), while trying their best to keep the phone 
held in the same position. This motion was completed fve times 
per participant. From this data, we found Pose-on-the-Go deviated 
from our Vicon ground truth by a mean angular error of 26.1◦ 

(SD = 10.1◦), see Figure 9. This poorer result was due to the chest 
leaving the view of the depth camera, precluding estimation (i.e., 
relying on IK interpolation alone). In post-hoc analysis, we found 
that there was a constant ofset in the torso position (an unintended 
bug) that afected our IK solver’s output. If we account for this, our 
mean angular error drops to 15.9◦ (SD = 10.1◦). 

6.3 Arm Pose (Hand Holding Phone) 
To gauge the accuracy of arm joint tracking, we asked our partici-
pants to perform the following motions with the smartphone fve 
times each: 

• Move the phone away from the body, and then towards. 
• Move the phone left-to-right and then right-to-left. 
• Move the phone up and then down. 
• Move the phone clockwise in a ~50cm circle. 
• Move the phone counterclockwise in a ~50cm circle. 
• Move the phone in a “fgure eight” ~50cm tall. 

With the data from this task, we computed the spatial error for 
participants’ wrists, elbows and shoulders. We found that Pose-
on-the-Go had a mean 3D euclidean error of 18.0cm (SD=3.0cm) 
across all joints. Broken out by joint (Figure 10), wrists had the 
greatest error of 27.4cm (SD=4.7cm), followed by elbows (M=17.0cm, 
SD=3.9cm), and shoulders (M=9.7cm, SD=2.1cm). Unsurprisingly, 
error increases as the IK solver tries to estimate joints farther along 
bone linkages (here, the torso is the body origin). 

6.4 Hand Orientation (Hand Holding Phone) 
We asked the participants to hold the phone in their dominant hand 
and rotate it left-to-right (yaw), up-and-down (pitch), and twist it 
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Figure 11: Pose-on-the-Go’s euclidean distance error (across 
participants) in the “obstacle course" study. Error bars are 
standard error. 

while keeping the screen facing them (roll), fve time each using 
only their wrist (as best possible). From this data, we calculated a 
wrist angular joint error yaw, pitch and roll of 11.5◦ (SD = 2.3◦), 
9.1◦ (SD = 3.3◦), and 8.9◦ (SD = 4.9◦), respectively; see Figure 9. 

6.5 Arm Pose (Hand Not Holding Phone) 
We asked our participants to use their non-dominant hand (in our 
case, all participants used their left hand) to touch the screen fve 
times in a row, simulating typing, and then drop their arm to a 
resting position. This process was repeated fve times, for a total 
of 25 screen taps. On this data, Pose-on-the-Go achieved an aver-
age 3D euclidean error of 20.9cm (SD=5.1cm), 13.4cm (SD=4.4cm), 
and 6.6cm (SD=1.2cm) for the wrist, elbow and shoulder joints 
respectively; see Figure 10. 

6.6 Leg Pose (Sitting/Standing) 
In this task, we placed a chair and 25cm tall pedestal into the Vicon 
tracking area, 2.5m apart. We asked participants to sit in the chair 
for a few seconds, then stand up and walk over to the pedestal, and 
fnally to step onto the pedestal. This procedure was repeated fve 
times and provided a wide variety of poses to evaluate the quality 
of our leg posing. 

There was no signifcant diference between left and right leg 
accuracy, and so we combined results. We found a mean 3D eu-
clidean error of 8.9cm (SD=1.6cm), 14.2cm (SD=2.3cm), and 23.7cm 
(SD=3.1cm) for the hips, knees and feet respectively (see Figure 10). 
This follows a similar trend as the arms, where the IK solver gets 
increasingly errorful father along bone linkages. Nonetheless, given 
we have no direct data for any of these joints, we view this result 
as very promising. 

6.7 World Tracking 
All of the analyses discussed so far have reported results in body 
coordinates (torso as the origin). However, Pose-on-the-Go also 
tracks and animates avatars moving around the world, and so we 
can evaluate the fdelity of absolute “world” position tracking. For 
data collection, we asked participants to walk the following paths 
continuously for 20 seconds each (with the aid of foor markers). 

• Walk forwards 2m, then backwards 2m (repeatedly). 
• Sidestep left 2m and then right 2m (repeatedly). 
• Walk in a circle (2m diameter). 
• Walk the perimeter a 2 × 2 meter square. 
• Walk in “fgure eight” pattern in a 4 × 2m area. 

Figure 12: Comparison of Vicon tracking vs. Pose-on-the-Go 
for one participant’s 3-DOF position in the “obstacle course" 
study. Note that spikes in the absolute diference plots are 
chiefy due to latency and not true spatial error. 

We use our avatar’s torso point for analysis. Across all walked 
paths and participants, we found a mean 3D world euclidean error of 
11.2cm (SD=5.7cm). Across X, Y and Z axes individually (Z is up), the 
mean euclidean errors are 11.6cm (SD=6.0cm), 15.2cm (SD=9.5cm) 
and 6.9cm (SD=3.9cm) respectively. 

6.8 Head Height Tracking (Z) 
Our “world” tracking procedure described in the previous section 
did not vary the height of the user (other than natural variation 
during locomotion). For this reason, the height of the head varied by 
~20cm over the entire data collection period. To more fully evaluate 
head height, we instead use the data collected in our previous Leg 
Pose (Sitting/Standing) study, where users were asked to sit and 
step onto a pedestal. Using this data, but now with absolute tracking, 
we found a mean head euclidean Z-axis error of 9.6cm (SD=4.6cm); 
see Figure 10. 

6.9 Locomotion 
We use the data from our body “world” tracking study to estimate 
the fdelity of Pose-on-the-Go’s locomotion animation. Rather than 
spatially compare every step taken, which we previously noted can 
be 180 degrees out of phase, we instead evaluate the movement 
sequence holistically to see if the avatar is locomoting in a faithful 
way. For this, we compare the number of steps the user took in real-
ity vs. number of steps taken by the Pose-on-the-Go avatar. Across 
all participants, our average step count error is 6.3% (SD=2.74%). In 
other words, if a user takes 100 steps, their avatar will have been 
animated taking 6.3% more of fewer steps on average. 

6.10 Obstacle Course 
All of the prior studies focused on diferent sets of joints in pur-
posely designed tasks. To test the efcacy of our full-body motion 
capture system, we conducted a less constrained study where we 
asked participants to walk in a 4 × 2m area in a “fgure eight” 



Pose-on-the-Go: Approximating User Pose with Smartphone Sensor Fusion and Inverse Kinematics CHI ’21, May 8–13, 2021, Yokohama, Japan 

Figure 13: We created two examples games that utilize Pose-
on-the-Go. Top: A fantasy game, where users can fght with 
swords and cast spells using arm movements. Bottom: a fu-
turistic third-person shooter, where a user can physically 
run and duck, while using their phone to aim and shoot a 
laser weapon. 

repeatedly. During this we asked them to look at diferent tar-
gets randomly and occasionally asked them to sit down, stand on 
the pedestal and touch their screens (akin to an “obstacle course" 
methodology, see e.g., [13, 32]. We then calculated participants’ full 
body 3D euclidean error and also their world position error. Since 
they were walking and the legs were not in sync, we also calculated 
the number of times their legs were out of phase and corrected for 
it by matching the appropriate leg. 

In this task, our average Euclidean error is 20.9cm (SD=2.6cm) 
across all participants and all joints. We found that the legs were out 
of phase 39.8% of the time (which we corrected for when computing 
leg joint error). Our world tracking accuracy broken out by X, Y 
and Z axes is 30.5cm (SD=17.7cm), 32.8cm (SD=19.0cm) and 10cm 
(SD=3.3cm) respectively. Per joint results are provided in Figure 11. 
Additionally, a representative example of positional data for one 
participant (captured synchronously by both systems) is shown in 
Figure 12. 

7 EXAMPLE USES 
Applications that could utilize information about a user’s full-body 
pose are incredibly diverse, as seen in the HCI literature (see Related 
Work) and the 100+ Xbox titles that used the Kinect sensor [41]. To 
illustrate the utility and feasibility of Pose-on-the-Go, we selected 
three use domains – gaming, social apps, and health – and created 
two proof-of-concept demo apps for each category. Please also refer 
to our Video Figure. 

7.1 Gaming 
The frst demo application we created was a third-person fantasy 
game (Figure 13 top). The user can select among diferent weapons 

Figure 14: An example of full-body “Animoji” enabled by 
Pose-on-the-Go, where users can wave (left) and hug (right). 

by tapping on the screen, which are controlled through arm mo-
tion. For example, a sword can be swung in the air, using the 
phone as a proxy for the hilt. We also included a magic wand, 
where various spells can be cast by tracing diferent paths in the 
air (e.g., a circle to cast a freball). In this example app, walking for-
wards/backwards and turning left/right could be controlled on the 
phone using up/down and left/right swipes on the phone’s screen, 
allowing the user to stand or sit without moving their body. 

For our second game — a third-person futuristic shooter — we 
utilize the user’s actual absolute body position and pose (Figure 
13 bottom), allowing them to physically walk around the virtual 
environment, and also duck behind cover to avoid enemy fre. In 
this game, the phone is a proxy for a handheld laser, allowing the 
user to both aim and shoot with their arm. 

7.2 Social Apps 
There are many smartphone apps that capture a user’s face and 
digitally transform or augment it for social purposes, such as Ap-
ple’s Animoji [10] and Snapchat’s Lenses [61]. The latter software 
is also an example of full-body AR augmentation, through this app 
augments other users (i.e., captured through the rear facing camera) 
rather than the holder of the phone. Such AR augmentation and 
“avatarization” has value in both entertainment and professional 
collaborative contexts [14, 15, 52]. 

Figure 15: Pose-on-the-Go could also be used to enhance 
communication expressivity in social and collaborative 
apps, helping to convey body language and gestures, such 
as handshakes, seen here. 
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Figure 16: Two health-related example applications, one 
that counts squats (left) and another that lays out reaching 
targets (right). 

With Pose-on-the-Go, we can immediately extend Animoji-style 
face capture with full-body versions. As an example, we created a 
bear avatar that can wave, hug, jump, and make a wide variety of 
other expressive, full-body motions (Figure 14). Similarly, mobile 
AR teleconferencing (Figure 15) could be greatly enhanced with 
avatars that can better convey body language (e.g., looking down 
at the foor, shrugging) and also allowing for social gestures (e.g., 
waves and handshakes). Our demo app also allowed users to walk 
around a shared virtual space, and users could realistically turn 
their eyes, heads and bodies towards diferent targets, providing an 
medium for efects such as proxemics [26] to play out. 

7.3 Health 
Finally, there are many examples in ftness and rehabilitation where 
capturing a user’s pose could be especially valuable. As a proof 
of concept, we created two applications. The frst is a ftness app 
(Figure 16 right), where exercises like squats and lunges could 
be counted or timed, as well as evaluated for quality (e.g., squat 
height, lunge distance). As a second example, we created an app 
that presents a series of targets that the user must reach with their 
hands and maintain balance (Figure 16 left), which could be part of 
a larger physical therapy regiment. 

8 LIMITATIONS 
It is important to note that Pose-on-the-Go is only an estima-
tion of full-body pose, and it not meant to compete with high-
accuracy tracking systems (e.g. Vicon), which are used in flm post-
production and similar uses requiring high fdelity. Indeed, this 
is the inherent tradeof that comes with building a system that 
requires no new, special or external sensors, and instead attempts 
to maximize use of the data already available to it. Nonetheless, 
Pose-on-the-Go’s accuracy should be sufcient for a wide range of 
casual gaming and social apps. That said, there are several areas 
where the system falls short, which are worth reviewing, pointing 
to potential future work. 

First is incomplete data about the body, most notably the arm not 
holding the phone, which is almost never digitized except when the 
user touches the screen. This potentially could be remedied with 

the advent of wider feld-of-view, user-facing cameras, which might 
better capture the elbow, or at least the upper arm with respect to 
the shoulder joint. The hand also might occasionally appear. The 
other body location we can only loosely approximate are the legs, 
animated based on absolute body motion and fxed stride lengths 
derived from a locomotion mode prediction. This is sufcient to 
animate the avatar, but is not true body capture. For this reason, 
walking animations can be totally out of leg phase from reality. 
Other joints, such as the hips and knees are entirely estimated by 
the IK solver, and are essentially an interpolation between other 
known pose data. 

Latency is another limitation of our current implement. At ~350ms, 
it starts to degrade the realism of the full-body tracking. Experiences 
would have to be designed to accommodate such latency, an issue 
also faced in many Xbox Kinect titles. In particular, the arm not 
holding the phone can only start animating once a fnger touches 
the screen and has lag closer to one second (when animation is 
applied) with no immediate avenue for improvement. Of course, 
even commercial systems have some lag – Apple’s Animoji feature, 
which also fuses data from RGB and depth user-facing cameras, has 
a latency of ~150ms. 

Another limitation is computational complexity and power de-
mand. This will require signifcant optimization eforts, but we 
do believe it is possible as demonstrated by Animoji-type features 
found on many smartphones today, as well as pose tracking of other 
users (via the rear camera) in e.g., PoseNet [49], SnapChat [61], and 
ARKit [7]. These processes are also heavyweight, but have been 
highly engineered and take advantage of hardware acceleration in 
order to run at interactive speeds. Of course, Pose-on-the-Go has 
to contend with more sensors, including all three iPhone cameras, 
which impacts battery life when running applications utilizing full-
body pose features. However, as noted earlier, we still get ~2 hours 
of battery life with our current implementation. 

9 CONCLUSION 
We have presented our work on Pose-on-the-Go, a sensor fusion ap-
proach that allows smartphones to estimate their owners’ full-body 
pose using only internal sensors. We benchmark our pose tracking 
output against a “hollywood-grade” optical tracking system requir-
ing retrorefective markers. Our results show that we can resolve 
most joints to within 25cm in 3D space, including the feet, despite 
typically having no direct sensor data below the chest. While only a 
coarse estimation of body pose, it nonetheless opens up new and in-
teresting whole-body applications, ranging from mobile AR games 
to more expressive social and collaborative interactions. 

REFERENCES 
[1] Karan Ahuja, Mayank Goel, and Chris Harrison. 2020. BodySLAM: Opportunistic 

User Digitization in Multi-User AR/VR Experiences. In Symposium on Spatial 
User Interaction (Virtual Event, Canada) (SUI ’20). Association for Computing 
Machinery, New York, NY, USA, Article 16, 8 pages. https://doi.org/10.1145/ 
3385959.3418452 

[2] Karan Ahuja, Chris Harrison, Mayank Goel, and Robert Xiao. 2019. MeCap: 
Whole-Body Digitization for Low-Cost VR/AR Headsets. In Proceedings of the 
32nd Annual ACM Symposium on User Interface Software and Technology (New 
Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, 
NY, USA, 453–462. https://doi.org/10.1145/3332165.3347889 

[3] Karan Ahuja, Andy Kong, Mayank Goel, and Chris Harrison. 2020. Direction-
of-Voice (DoV) Estimation for Intuitive Speech Interaction with Smart Devices 

https://doi.org/10.1145/3385959.3418452
https://doi.org/10.1145/3385959.3418452
https://doi.org/10.1145/3332165.3347889


Pose-on-the-Go: Approximating User Pose with Smartphone Sensor Fusion and Inverse Kinematics CHI ’21, May 8–13, 2021, Yokohama, Japan 

Ecosystems (UIST ’20). Association for Computing Machinery, New York, NY, 
USA, 1121–1131. https://doi.org/10.1145/3379337.3415588 

[4] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. 2018. Densepose: Dense 
human pose estimation in the wild. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR ’18). IEEE, 7297–7306. https: 
//doi.org/10.1109/CVPR.2018.00762 

[5] ALT LLC. 2020. Antilatency. Retrieved 2020 from https://antilatency.com/ 
[6] Raphael Anderegg, Loïc Ciccone, and Robert W. Sumner. 2018. PuppetPhone: 

Puppeteering Virtual Characters Using a Smartphone. In Proceedings of the 11th 
Annual International Conference on Motion, Interaction, and Games (Limassol, 
Cyprus) (MIG ’18). Association for Computing Machinery, New York, NY, USA, 
Article 5, 6 pages. https://doi.org/10.1145/3274247.3274511 

[7] Apple Inc. 2020. Apple Developer - ARFaceAnchor. Retrieved 2020 from 
https://developer.apple.com/documentation/arkit/arfaceanchor 

[8] Apple Inc. 2020. Apple Developer - CoreMotion Activity. Retrieved 2020 from 
https://developer.apple.com/documentation/coremotion/cmmotionactivity 

[9] Apple Inc. 2020. Apple Developer - CoreMotion Pedometer. Retrieved 2020 
from https://developer.apple.com/documentation/coremotion/cmpedometerdata 

[10] Apple Inc. 2020. Support - Animoji. Retrieved 2020 from https://support.apple. 
com/en-au/HT208190 

[11] Teo Babic, Florian Perteneder, Harald Reiterer, and Michael Haller. 2020. Simo: 
Interactions with Distant Displays by Smartphones with Simultaneous Face and 
World Tracking. In Extended Abstracts of the 2020 CHI Conference on Human 
Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association 
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/ 
3334480.3382962 

[12] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. 
2018. Openface 2.0: Facial behavior analysis toolkit. In 2018 13th IEEE International 
Conference on Automatic Face & Gesture Recognition (FG ’18). IEEE, 59–66. https: 
//doi.org/10.1109/FG.2018.00019 

[13] Ling Bao and Stephen S Intille. 2004. Activity recognition from user-annotated 
acceleration data. In International conference on pervasive computing. Springer, 
1–17. 

[14] Steve Benford, John Bowers, Lennart E. Fahlén, Chris Greenhalgh, and Dave 
Snowdon. 1995. User Embodiment in Collaborative Virtual Environments. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 
(Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-Wesley Publishing Co., 
USA, 242–249. https://doi.org/10.1145/223904.223935 

[15] Barry Brown and Marek Bell. 2004. CSCW at Play: ’there’ as a Collaborative 
Virtual Environment. In Proceedings of the 2004 ACM Conference on Computer 
Supported Cooperative Work (Chicago, Illinois, USA) (CSCW ’04). Association for 
Computing Machinery, New York, NY, USA, 350–359. https://doi.org/10.1145/ 
1031607.1031666 

[16] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-
person 2D Pose Estimation Using Part Afnity Fields. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (CVPR ’17). IEEE, 7291–7299. 
https://doi.org/10.1109/CVPR.2017.143 

[17] Ke-Yu Chen, Shwetak N. Patel, and Sean Keller. 2016. Finexus: Tracking Precise 
Motions of Multiple Fingertips Using Magnetic Sensing. In Proceedings of the 2016 
CHI Conference on Human Factors in Computing Systems (San Jose, California, 
USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 
1504–1514. https://doi.org/10.1145/2858036.2858125 

[18] Weiya Chen, Chenchen Yu, Chenyu Tu, Zehua Lyu, Jing Tang, Shiqi Ou, Yan 
Fu, and Zhidong Xue. 2020. A Survey on Hand Pose Estimation with Wearable 
Sensors and Computer-Vision-Based Methods. Sensors 20, 4 (2020), 1074. https: 
//doi.org/10.3390/s20041074 

[19] Xiang ’Anthony’ Chen, Julia Schwarz, Chris Harrison, Jennifer Mankof, and 
Scott Hudson. 2014. Around-Body Interaction: Sensing & Interaction Techniques 
for Proprioception-Enhanced Input with Mobile Devices. In Proceedings of the 
16th International Conference on Human-Computer Interaction with Mobile Devices 
& Services (Toronto, ON, Canada) (MobileHCI ’14). Association for Computing Ma-
chinery, New York, NY, USA, 287–290. https://doi.org/10.1145/2628363.2628402 

[20] Amit Das, Ivan Tashev, and Shoaib Mohammed. 2017. Ultrasound based gesture 
recognition. In 2017 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP ’17). IEEE, 406–410. https://doi.org/10.1109/ICASSP.2017. 
7952187 

[21] Muybridge Eadweard. 1878. The Horse in Motion. 
[22] Facebook Technologies LLC. 2020. Oculus Quest. Retrieved 2020 from https: 

//www.oculus.com/quest 
[23] Bo Fan, Lei Xie, Shan Yang, Lijuan Wang, and Frank K Soong. 2016. A deep 

bidirectional LSTM approach for video-realistic talking head. Multimedia Tools 
and Applications 75, 9 (2016), 5287–5309. 

[24] Eric Foxlin and Michael Harrington. 2000. WearTrack: a self-referenced head 
and hand tracker for wearable computers and portable VR. In Digest of Papers. 
Fourth International Symposium on Wearable Computers (ISWC ’00). IEEE, 155–162. 
https://doi.org/10.1109/ISWC.2000.888482 

[25] Sehoon Ha, Yunfei Bai, and C. Karen Liu. 2011. Human Motion Reconstruction 
from Force Sensors. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics 

Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA 
’11). Association for Computing Machinery, New York, NY, USA, 129–138. https: 
//doi.org/10.1145/2019406.2019424 

[26] Edward Twitchell Hall. 1962. Proxemics: The study of man’s spatial relations. 
[27] Chris Harrison, Hrvoje Benko, and Andrew D. Wilson. 2011. OmniTouch: Wear-

able Multitouch Interaction Everywhere. In Proceedings of the 24th Annual ACM 
Symposium on User Interface Software and Technology (Santa Barbara, California, 
USA) (UIST ’11). Association for Computing Machinery, New York, NY, USA, 
441–450. https://doi.org/10.1145/2047196.2047255 

[28] Chris Harrison, Julia Schwarz, and Scott E. Hudson. 2011. TapSense: Enhancing 
Finger Interaction on Touch Surfaces. In Proceedings of the 24th Annual ACM 
Symposium on User Interface Software and Technology (Santa Barbara, California, 
USA) (UIST ’11). Association for Computing Machinery, New York, NY, USA, 
627–636. https://doi.org/10.1145/2047196.2047279 

[29] Gregor Hofer, Junichi Yamagishi, and Hiroshi Shimodaira. 2008. Speech-driven 
lip motion generation with a trajectory HMM. (2008). 

[30] Notch Interfaces Inc. 2020. Notch Interfaces. Retrieved 2020 from https: 
//wearnotch.com/ 

[31] Intel Corporation. 2020. RealSense. Retrieved 2020 from https://www. 
intelrealsense.com/ 

[32] Stephen S. Intille, Ling Bao, Emmanuel Munguia Tapia, and John Rondoni. 2004. 
Acquiring in Situ Training Data for Context-Aware Ubiquitous Computing Appli-
cations. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (Vienna, Austria) (CHI ’04). Association for Computing Machinery, New 
York, NY, USA, 1–8. https://doi.org/10.1145/985692.985693 

[33] Haojian Jin, Zhijian Yang, Swarun Kumar, and Jason I. Hong. 2018. Towards 
Wearable Everyday Body-Frame Tracking Using Passive RFIDs. Proc. ACM 
Interact. Mob. Wearable Ubiquitous Technol. 1, 4, Article 145 (Jan. 2018), 23 pages. 
https://doi.org/10.1145/3161199 

[34] Vahid Kazemi and Josephine Sullivan. 2014. One millisecond face alignment 
with an ensemble of regression trees. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (CVPR ’14). IEEE Computer Society, USA, 
1867–1874. https://doi.org/10.1109/CVPR.2014.241 

[35] David Kim, Otmar Hilliges, Shahram Izadi, Alex D. Butler, Jiawen Chen, Iason 
Oikonomidis, and Patrick Olivier. 2012. Digits: Freehand 3D Interactions Any-
where Using a Wrist-Worn Gloveless Sensor. In Proceedings of the 25th Annual 
ACM Symposium on User Interface Software and Technology (Cambridge, Mas-
sachusetts, USA) (UIST ’12). Association for Computing Machinery, New York, 
NY, USA, 167–176. https://doi.org/10.1145/2380116.2380139 

[36] Daehwa Kim, Keunwoo Park, and Geehyuk Lee. 2020. OddEyeCam: A Sensing 
Technique for Body-Centric Peephole Interaction Using WFoV RGB and NFoV 
Depth Cameras. In Proceedings of the 33rd Annual ACM Symposium on User 
Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association 
for Computing Machinery, New York, NY, USA, 85–97. https://doi.org/10.1145/ 
3379337.3415889 

[37] Huy Viet Le, Sven Mayer, and Niels Henze. 2019. Investigating the Feasibility 
of Finger Identifcation on Capacitive Touchscreens Using Deep Learning. In 
Proceedings of the 24th International Conference on Intelligent User Interfaces 
(Marina del Ray, California) (IUI ’19). Association for Computing Machinery, New 
York, NY, USA, 637–649. https://doi.org/10.1145/3301275.3302295 

[38] Mingyang Li and Anastasios I Mourikis. 2013. 3-D motion estimation and 
online temporal calibration for camera-IMU systems. In 2013 IEEE Interna-
tional Conference on Robotics and Automation (ICRA ’13). IEEE, IEEE, 5709–5716. 
https://doi.org/10.1109/ICRA.2013.6631398 

[39] Sven Mayer, Huy Viet Le, and Niels Henze. 2017. Estimating the Finger Orien-
tation on Capacitive Touchscreens Using Convolutional Neural Networks. In 
Proceedings of the 2017 ACM International Conference on Interactive Surfaces and 
Spaces (Brighton, United Kingdom) (ISS ’17). Association for Computing Machin-
ery, New York, NY, USA, 220–229. https://doi.org/10.1145/3132272.3134130 

[40] Meta Motion. 2018. Gypsy Motion Capture System. Retrieved 2021 from 
http://metamotion.com/gypsy/gypsy-motion-capture-system.htm 

[41] Microsoft Corporation. 2010. Microsoft Kinect. Retrieved 2021 from https: 
//en.wikipedia.org/wiki/Kinect 

[42] Microsoft Corporation. 2010. Microsoft Kinect Games. Retrieved 2021 from 
https://en.wikipedia.org/wiki/Category:Kinect_games 

[43] Microsoft Corporation. 2019. HoloLens. Retrieved 2021 from https://www. 
microsoft.com/en-us/hololens 

[44] Nathan Miller, Odest Chadwicke Jenkins, Marcelo Kallmann, and Maja J Mataric. 
2004. Motion capture from inertial sensing for untethered humanoid teleoper-
ation. In 4th IEEE/RAS International Conference on Humanoid Robots (ICHR ’04, 
Vol. 2). IEEE, 547–565. https://doi.org/10.1109/ICHR.2004.1442670 

[45] NaturalPoint Inc. 2020. OptiTrack. Retrieved 2020 from http://optitrack.com 
[46] Seungtak Noh, Hui-Shyong Yeo, and Woontack Woo. 2015. An HMD-based 

Mixed Reality System for Avatar-Mediated Remote Collaboration with Bare-
hand Interaction. In International Conference on Artifcial Reality and Telexistence 
and Eurographics Symposium on Virtual Environments (ICAT-EGVE ’15). The 
Eurographics Association, 61–68. https://doi.org/10.2312/egve.20151311 

https://doi.org/10.1145/3379337.3415588
https://doi.org/10.1109/CVPR.2018.00762
https://doi.org/10.1109/CVPR.2018.00762
https://antilatency.com/
https://doi.org/10.1145/3274247.3274511
https://developer.apple.com/documentation/arkit/arfaceanchor
https://developer.apple.com/documentation/coremotion/cmmotionactivity
https://developer.apple.com/documentation/coremotion/cmpedometerdata
https://support.apple.com/en-au/HT208190
https://support.apple.com/en-au/HT208190
https://doi.org/10.1145/3334480.3382962
https://doi.org/10.1145/3334480.3382962
https://doi.org/10.1109/FG.2018.00019
https://doi.org/10.1109/FG.2018.00019
https://doi.org/10.1145/223904.223935
https://doi.org/10.1145/1031607.1031666
https://doi.org/10.1145/1031607.1031666
https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.1145/2858036.2858125
https://doi.org/10.3390/s20041074
https://doi.org/10.3390/s20041074
https://doi.org/10.1145/2628363.2628402
https://doi.org/10.1109/ICASSP.2017.7952187
https://doi.org/10.1109/ICASSP.2017.7952187
https://www.oculus.com/quest
https://www.oculus.com/quest
https://doi.org/10.1109/ISWC.2000.888482
https://doi.org/10.1145/2019406.2019424
https://doi.org/10.1145/2019406.2019424
https://doi.org/10.1145/2047196.2047255
https://doi.org/10.1145/2047196.2047279
https://wearnotch.com/
https://wearnotch.com/
https://www.intelrealsense.com/
https://www.intelrealsense.com/
https://doi.org/10.1145/985692.985693
https://doi.org/10.1145/3161199
https://doi.org/10.1109/CVPR.2014.241
https://doi.org/10.1145/2380116.2380139
https://doi.org/10.1145/3379337.3415889
https://doi.org/10.1145/3379337.3415889
https://doi.org/10.1145/3301275.3302295
https://doi.org/10.1109/ICRA.2013.6631398
https://doi.org/10.1145/3132272.3134130
http://metamotion.com/gypsy/gypsy-motion-capture-system.htm
https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Category:Kinect_games
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://doi.org/10.1109/ICHR.2004.1442670
http://optitrack.com
https://doi.org/10.2312/egve.20151311


CHI ’21, May 8–13, 2021, Yokohama, Japan 

[47] Northern Digital Inc. 2020. trakSTAR. Retrieved 2020 from https://www.ndigital. 
com/msci/products/drivebay-trakstar/ 

[48] OpenNI. 2020. OpenNI. Retrieved 2020 from https://structure.io/openni 
[49] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan 

Tompson, and Kevin Murphy. 2018. Personlab: Person pose estimation and 
instance segmentation with a bottom-up, part-based, geometric embedding model. 
In Proceedings of the European Conference on Computer Vision (ECCV ’18). 269–286. 
https://doi.org/10.1007/978-3-030-01264-9_17 

[50] Mathias Parger, Joerg H. Mueller, Dieter Schmalstieg, and Markus Steinberger. 
2018. Human Upper-Body Inverse Kinematics for Increased Embodiment in 
Consumer-Grade Virtual Reality (VRST ’18). Association for Computing Machin-
ery, New York, NY, USA, Article 23, 10 pages. https://doi.org/10.1145/3281505. 
3281529 

[51] PhaseSpace Inc. 2020. PhaseSpace. Retrieved 2020 from https://phasespace.com/ 
[52] Thammathip Piumsomboon, Gun A. Lee, Jonathon D. Hart, Barrett Ens, Robert W. 

Lindeman, Bruce H. Thomas, and Mark Billinghurst. 2018. Mini-Me: An Adaptive 
Avatar for Mixed Reality Remote Collaboration. In Proceedings of the 2018 CHI 
Conference on Human Factors in Computing Systems (Montreal QC, Canada) 
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–13. 
https://doi.org/10.1145/3173574.3173620 

[53] Polhemus. 2020. Polhemus. Retrieved 2020 from https://polhemus.com/case-
study/detail/polhemus-motion-capture-system-is-used-to-measure-real-time-
motion-analysis 

[54] Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, Mohammad 
Shafei, Hans-Peter Seidel, Bernt Schiele, and Christian Theobalt. 2016. EgoCap: 
Egocentric Marker-Less Motion Capture with Two Fisheye Cameras. ACM Trans. 
Graph. 35, 6, Article 162 (Nov. 2016), 11 pages. https://doi.org/10.1145/2980179. 
2980235 

[55] Thiago Braga Rodrigues, Ciarán Ó Catháin, Declan Devine, Kieran Moran, Noel E 
O’Connor, and Niall Murray. 2019. An Evaluation of a 3D Multimodal Marker-Less 
Motion Analysis System. In Proceedings of the 10th ACM Multimedia Systems Con-
ference (Amherst, Massachusetts) (MMSys ’19). Association for Computing Ma-
chinery, New York, NY, USA, 213–221. https://doi.org/10.1145/3304109.3306236 

[56] Grégory Rogez, Maryam Khademi, JS Supančič III, Jose Maria Martinez Montiel, 
and Deva Ramanan. 2014. 3D hand pose detection in egocentric RGB-D images. 
In European Conference on Computer Vision. Springer, 356–371. https://doi.org/ 
10.1007/978-3-319-16178-5_25 

[57] Root Motion. 2020. FINAL IK - VRIK Solver Locomotion. Retrieved 2020 from 
http://www.root-motion.com/fnalikdox/html/page16.html 

[58] Root Motion. 2020. Root Motion. Retrieved 2020 from http://root-motion.com/ 
[59] Sheng Shen, He Wang, and Romit Roy Choudhury. 2016. I Am a Smartwatch 

and I Can Track My User’s Arm. In Proceedings of the 14th Annual International 
Conference on Mobile Systems, Applications, and Services (Singapore, Singapore) 
(MobiSys ’16). Association for Computing Machinery, New York, NY, USA, 85–96. 
https://doi.org/10.1145/2906388.2906407 

Ahuja, et al. 

[60] Takaaki Shiratori, Hyun Soo Park, Leonid Sigal, Yaser Sheikh, and Jessica K. 
Hodgins. 2011. Motion Capture from Body-Mounted Cameras. In ACM SIGGRAPH 
2011 Papers. Association for Computing Machinery, New York, NY, USA. https: 
//doi.org/10.1145/1964921.1964926 

[61] Snap Inc. 2020. Snapchat Lenses. Retrieved 2020 from https://lensstudio.snapchat. 
com/lenses/ 

[62] Ivan E. Sutherland. 1968. A Head-Mounted Three Dimensional Display. In Pro-
ceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I (San 
Francisco, California) (AFIPS ’68 (Fall, part I)). Association for Computing Ma-
chinery, New York, NY, USA, 757–764. https://doi.org/10.1145/1476589.1476686 

[63] Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber, Thomas 
Helten, Meinard Müller, Hans-Peter Seidel, and Bernd Eberhardt. 2011. Motion 
Reconstruction Using Sparse Accelerometer Data. ACM Trans. Graph. 30, 3, 
Article 18 (May 2011), 12 pages. https://doi.org/10.1145/1966394.1966397 

[64] Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. 2019. xr-
egopose: Egocentric 3d human pose from an hmd camera. In Proceedings of the 
IEEE International Conference on Computer Vision (ICCV ’19). IEEE, 7728–7738. 
https://doi.org/10.1109/ICCV.2019.00782 

[65] Unity Technologies. 2020. Unity. Retrieved 2020 from https://unity.com/ 
[66] Verhaert. 2020. Verhaert. Retrieved 2020 from https://verhaert.com/ 
[67] Vicon Motion Systems Ltd. 2020. Vicon. Retrieved 2020 from https://vicon.com/ 
[68] Vive. 2020. HTC VIVE. Retrieved 2020 from https://www.vive.com/ 
[69] Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci, John Barnwell, Markus 

Gross, Wojciech Matusik, and Jovan Popović. 2007. Practical Motion Capture 
in Everyday Surroundings. ACM Trans. Graph. 26, 3 (July 2007), 35–es. https: 
//doi.org/10.1145/1276377.1276421 

[70] Robert Xiao, Julia Schwarz, and Chris Harrison. 2015. Estimating 3D Finger Angle 
on Commodity Touchscreens. In Proceedings of the 2015 International Conference 
on Interactive Tabletops & Surfaces (Madeira, Portugal) (ITS ’15). Association for 
Computing Machinery, New York, NY, USA, 47–50. https://doi.org/10.1145/ 
2817721.2817737 

[71] Xsens. 2020. Motion Capture. Retrieved 2020 from https://www.xsens.com/ 
motion-capture 

[72] Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge Rhodin, Pascal Fua, 
Hans-Peter Seidel, and Christian Theobalt. 2019. Mo2Cap2: Real-time Mobile 
3D Motion Capture with a Cap-mounted Fisheye Camera. IEEE Transactions on 
Visualization and Computer Graphics 25, 5 (2019), 2093–2101. https://doi.org/10. 
1109/TVCG.2019.2898650 

[73] Yasuyoshi Yokokohji, Yuki Kitaoka, and Tsuneo Yoshikawa. 2005. Motion capture 
from demonstrator’s viewpoint and its application to robot teaching. Journal of 
Robotic Systems 22, 2 (2005), 87–97. https://doi.org/10.1002/rob.20050 

[74] Mingmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong Tian, Hang 
Zhao, Antonio Torralba, and Dina Katabi. 2018. Through-wall human pose 
estimation using radio signals. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR ’18). IEEE, 7356–7365. https://doi.org/10. 
1109/CVPR.2018.00768 

https://www.ndigital.com/msci/products/drivebay-trakstar/
https://www.ndigital.com/msci/products/drivebay-trakstar/
https://structure.io/openni
https://doi.org/10.1007/978-3-030-01264-9_17
https://doi.org/10.1145/3281505.3281529
https://doi.org/10.1145/3281505.3281529
https://phasespace.com/
https://doi.org/10.1145/3173574.3173620
https://polhemus.com/case-study/detail/polhemus-motion-capture-system-is-used-to-measure-real-time-motion-analysis
https://polhemus.com/case-study/detail/polhemus-motion-capture-system-is-used-to-measure-real-time-motion-analysis
https://polhemus.com/case-study/detail/polhemus-motion-capture-system-is-used-to-measure-real-time-motion-analysis
https://doi.org/10.1145/2980179.2980235
https://doi.org/10.1145/2980179.2980235
https://doi.org/10.1145/3304109.3306236
https://doi.org/10.1007/978-3-319-16178-5_25
https://doi.org/10.1007/978-3-319-16178-5_25
http://www.root-motion.com/finalikdox/html/page16.html
http://root-motion.com/
https://doi.org/10.1145/2906388.2906407
https://doi.org/10.1145/1964921.1964926
https://doi.org/10.1145/1964921.1964926
https://lensstudio.snapchat.com/lenses/
https://lensstudio.snapchat.com/lenses/
https://doi.org/10.1145/1476589.1476686
https://doi.org/10.1145/1966394.1966397
https://doi.org/10.1109/ICCV.2019.00782
https://unity.com/
https://verhaert.com/
https://vicon.com/
https://www.vive.com/
https://doi.org/10.1145/1276377.1276421
https://doi.org/10.1145/1276377.1276421
https://doi.org/10.1145/2817721.2817737
https://doi.org/10.1145/2817721.2817737
https://www.xsens.com/motion-capture
https://www.xsens.com/motion-capture
https://doi.org/10.1109/TVCG.2019.2898650
https://doi.org/10.1109/TVCG.2019.2898650
https://doi.org/10.1002/rob.20050
https://doi.org/10.1109/CVPR.2018.00768
https://doi.org/10.1109/CVPR.2018.00768

	Abstract
	1 Introduction
	2 Related Work
	2.1 External Body Capture Sensing
	2.2 Worn Body Capture Sensing
	2.3 Single-Point Worn Body Capture Sensing

	3 Implementation
	3.1 Inverse Kinematic Model & 3D Engine
	3.2 Head Position & Orientation
	3.3 Eye Gaze
	3.4 Torso Orientation
	3.5 Phone Orientation
	3.6 Arm & Hand (Holding Phone) Pose
	3.7 Arm & Hand (Not Holding Phone) Pose
	3.8 Absolute ``World'' Position
	3.9 Locomotion Mode & Leg Animation
	3.10 Sittings/Standing & Body Height
	3.11 Data Synchronization
	3.12 Framerate, Latency and Power Draw

	4 Open Source Model and Data
	5 Additional Capture Dimensions
	5.1 Smartwatch for Other Arm Tracking
	5.2 Finger Identification & Orientation
	5.3 Facial Expression & Speech
	5.4 Appearance

	6 Evaluation
	6.1 Head Orientation
	6.2 Torso Orientation
	6.3 Arm Pose (Hand Holding Phone)
	6.4 Hand Orientation (Hand Holding Phone)
	6.5 Arm Pose (Hand Not Holding Phone)
	6.6 Leg Pose (Sitting/Standing)
	6.7 World Tracking
	6.8 Head Height Tracking (Z)
	6.9 Locomotion
	6.10 Obstacle Course

	7 Example Uses
	7.1 Gaming
	7.2 Social Apps
	7.3 Health

	8 Limitations
	9 Conclusion
	References



