MI-Poser: Human Body Pose Tracking using Magnetic and Inertial Sensor Fusion with Metal Interference Mitigation
Inside-out tracking of human body poses using wearable sensors holds significant potential for AR/VR applications, such as remote communication through 3D avatars with expressive body language. Current inside-out systems often rely on vision-based methods utilizing handheld controllers or incorporating densely distributed body-worn IMU sensors. The former limits hands-free and occlusion-robust interactions, while the latter is plagued by inadequate accuracy and jittering. We introduce a novel body tracking system, MI-Poser, which employs AR glasses and two wrist-worn electromagnetic field (EMF) sensors to achieve high-fidelity upper-body pose estimation while mitigating metal interference. Our lightweight system demonstrates a minimal error (6.6 cm mean joint position error) with real-world data collected from 10 participants. It remains robust against various upper-body movements and operates efficiently at 60 Hz.